
 International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility.

Detectors and flux instrumentation for future neutrino facilities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 JINST 4 T05001

(http://iopscience.iop.org/1748-0221/4/05/T05001)

Download details:

IP Address: 137.138.124.14

The article was downloaded on 11/08/2010 at 14:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-0221/4/05
http://iopscience.iop.org/1748-0221
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


2
0
0
9
 
J
I
N
S
T
 
4
 
T
0
5
0
0
1

PUBLISHED BY IOP PUBLISHING FOR SISSA

RECEIVED: January 5, 2009
ACCEPTED: February 25, 2009

PUBLISHED: May 18, 2009

TECHNICAL REPORT

International Scoping Study (ISS) for a future
neutrino factory and Super-Beam facility. Detectors
and flux instrumentation for future neutrino facilities

The ISS Detector Working Group

T. Abe,a H. Aihara, a C. Andreop oulos, b A. Ankowski, ai A. Badertscher, c

G. Battistoni, d A. Blondel, e J. Bouchez, f A. Bross, h A. Bueno, i L. Camilleri, g

J.E. Campagne, j A. Cazes,k A. Cervera-Villanueva, l G. De Lellis, m F. Di Capua, m

M. Ellis, h A. Ereditato, n L.S. Esposito, o C. Fukushima, p E. Gschwendtner, g

J.J. Gomez-Cadenas, l M. Iwasaki, a K. Kaneyuki, a Y. Karadzhov, q V. Kashikhin, h

Y. Kawai, r M. Komatsu, s E. Kozlovskaya, t Y. Kudenko, u A. Kusaka, a H. Kyushima, r

A. Laing, a f K. Long, ag A. Longhin, v A. Marchionni, c A. Marotta, m C. McGrew, w

S. Menary, h,x A. Meregaglia, c M. Mezzeto,v P. Migliozzi, m N.K. Mondal, y

C. Montanari, z T. Nakadaira, aa M. Nakamura, s H. Nakumo, a H. Nakayama, a

J. Nelson, ab J. Nowak, a j S. Ogawa, p J. Peltoniemi, ac A. Pla-Dalmau, h S. Ragazzi,d

A. Rubbia, c F. Sanchez, ad J. Sarkamo, ac O. Sato,s M. Selvi, ae H. Shibuya, p

M. Shozawa, a J. Sobczyk, ai F.J.P. Soler, a f,1 P. Strolin, m M. Suyama, r M. Tanaka,aa

F. Terranova, k R. Tsenov, q Y. Uchida, ag A. Weber ah,b and A. Zlobin h

aInstitute for Cosmic Ray Research, University of Tokyo,
5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8582 Japan

bScience and Technology Facilities Council, Rutherford Appleton Laboratory,
Harwell Science and Innovation Campus,
Didcot, OX11 0QX, United Kingdom

cETH, Z̈urich, Institute for Particle Physics (IPP),
Schafmattstrasse 20, CH - 8093 Zurich, Switzerland

dDipartimento di Fisica and INFN, Università degli Studi di Milano,
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ABSTRACT: This report summarises the conclusions from the detector group of the International
Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector
options for each possible neutrino beam are defined as follows:

1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV
Beta Beam and Super Beam facility.

2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium
energy facility between 1–5 GeV. These include a totally active scintillating detector (TASD),
a liquid argon TPC or a water Cherenkov detector.

3. A 100 kton magnetized iron neutrino detector (MIND) is thebaseline to detect the wrong
sign muon final states (golden channel) at a high energy (20–50 GeV) neutrino factory from
muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong
sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve
degeneracies that appear in theδ -θ13 parameter space.

KEYWORDS: Large detector systems for particle and astroparticle physics; Beam-line instrumen-
tation (beam position and profile monitors; beam-intensitymonitors; bunch length monitors)
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1 Introduction

The International Scoping Study (ISS) for a future accelerator neutrino complex was carried out
by the international community between NuFact05, Frascati, 21–26 June 2005, and NuFact06,
Irvine, 24–30 August 2006. The physics case for the facilitywas evaluated and options for the
accelerator complex and neutrino detection systems were studied. One of the novel characteristics
of the ISS with respect to previous studies was the systematic investigation of detector options for
future long base line neutrino experiments, as a necessary step towards optimising the performance
of the whole facility. In addition to the study of far detectors it was felt necessary to add a study of
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the near detectors and instrumentation for the primary beamline. These are crucial to understand
the performance of the facilities from the point of view of systematic errors. This applies to the
Beta-beam or Neutrino Factory storage ring, or to the Superbeam decay tunnel. Two additional
topics of critical relevance for the choice of facility wereadded to the discussion: matter effect
uncertainties and systematic errors due to uncertainties in the cross-sections and efficiencies of low
energy neutrino interactions.

1.1 Organization

Following the initial guidelines given at NUFACT05 [1], the working groups have largely built on
existing studies to delineate the main avenues where further investigations would be most benefi-
cial, and initiated the required simulation work. The work was carried out in five working groups:

• Segmented magnetic detectors;

• Large Water Cherenkov detectors (WC);

• Large Liquid Argon TPCs (LAr TPC);

• Emulsion-based detectors: Emulsion Cloud Chamber (ECC) and Magnetized ECC (MECC);

• Near detector and beam instrumentation.

The important issue of novel detector techniques of common interest (such as Silicon Photo
Multipliers and large area photo-detectors) was treated incommon dedicated sessions of the work-
ing group. Finally, the need of large magnetic volumes required for the neutrino factory detector
was considered.

The mandate of the study was to establish a set of baseline detectors to be carried forward for
further study. It is clear that accomplishing such a goal would require an extremely tight collabo-
ration between the physics performance group and the detector design group. However a number
of choices could be made from known feasibility/cost considerations.

1.2 Main beam and far detector options

The main far detector options are listed below:

1. Single flavour sub-GeV neutrino beams: low energy superbeamand beta-beam. This
is the scenario advocated for instance for the off-axis beamfrom J-PARC, the SPL super-
beam and6He or 18Ne beta-beams at CERN. In this energy range detectors need not be
magnetized, quasi-elastic reactions dominate and pion production is small. A very massive
water Cherenkov (WC) detector is the baseline option. The small and poorly understood
cross-sections, and the lowQ2 of the interactions pose considerable systematic problems
which make the design of the near detectors very critical. The possibility to use very large
LArTPCs has been envisaged, but the relative merit would need to be better justified, and
indications are that this is not the case.

2. Few GeV beams: off-axis and wide band beam and high energy beta-beam. This is
what one would obtain with an off-axis NUMI beam or equivalent, wide-band pion/kaon

– 2 –
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decay beam (WBB) from a 20–50 GeV proton beam, or from a high energy beta-beam,
either from highγ 6He or 18Ne or from accelerating higher Q (e.g.8B or 8Li ) isotopes.
Here the situation is more complex since multi-pion production becomes common and event
identification requires more sophistication. This is not aneasy energy domain to work at,
and there is not a clear winner in this domain between the WC, the totally active scintillating
detector (TASD) (à la NOνA), a LArTPC or even an iron-scintillator sandwich.

3. High energy beams from muon decay (Neutrino Factory). Magnetic detectors are com-
pulsory since two leptonic charges of neutrinos are presentat the same time. The baseline
detector here is the magnetized iron neutrino detector (MIND) for the wrong sign muon final
states, but the full exploitation of the richness of possible oscillation channels strongly moti-
vates the study of other types of detectors: magnetized low Zfine grain detector (scintillator
or LAr) for wrong-sign electron final states, emulsion detector (ECC) for wrong-sign tau
detection and magnetized emulsion (MECC) for all the above.

In all three scenarios appropriate near detectors and beam instrumentation are essential. In-
deed, the precision era poses new challenges for the flux and cross-section monitoring systems.
Appearance measurements require that the product of cross-section times acceptance be measured
for the appearance channel in relation to that of initial neutrino flavour. This is a major difficulty for
the conventional pion decay superbeam, since little instrumentation can be installed to monitor the
secondary flux of mesons in a high intensity environment; there is a clear need for specific hadro-
production experiments backed up with fine grained near detectors, to measure preciselyνµ , νµ ,
νe and νe , topological cross-sections. The issue is much easier for the beta-beam or the neutrino
factory, where the stored parent beam can be monitored precisely and the known decay provides a
potentially well known flux. In addition, purely leptonic reactions can be used as absolute candles.
A new domain of precision cross-section measurements at the10−3 level opens up. Of course a
detailed simulation and study of the near detector station and of the associated near detectors and
beam instrumentation is required to firm up these claims.

More details and the presentations can be found on the detector study web site [2]. The physics
performance1 and the sensitivity to the oscillation parameters of the different far detectors (and
combinations) can be found in the ISS Physics Report [3].

1.3 Main achievements and open issues

Given that this study is not the first one, it is worthwhile emphasizing in this introduction what is
the new information content, and what are the issues which remain open after its completion.

The main achievements or new information gathered through this study are as follows.

• A Magnetized Iron Neutrino Detector (MIND) of 100 kton should be feasible for a hardware
cost of∼200 Me.

• The threshold for muon detection in an optimised MIND can be lowered down to 1–3 GeV/c
for a dominant background of wrong charge assignment ofO(10−3). The efficiency above
5 GeV can be set to 70%.

1Including signal and background efficiencies in some cases
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• A large air-core coil can be envisaged to host 20–30 kton of fully active fine grained detector
(scintillator, LAr or emulsion) for a reasonable cost (O(100 Me) ).

• The muon detection threshold can be further lowered down to∼0.4 GeV/c using a Totally
Active Scintillating Detector (TASD). This detector should be able to measure the charge of
the muon with a negligible mis-identification rate (O(10−5)) for muons above∼0.4 GeV/c.

• A MECC of 10 kton can be designed, which, thanks to the exquisite space and angle resolu-
tion of the emulsion, can measure electron and muon charge and momentum up to∼10 GeV.

• The first studies of very large underground excavations havebeen pursued and cost estimates
for a megaton WC detector have been given.

• A revolution in photo-detection has been brought forward inthe last few years with the
appearance of new type of avalanche-photodiode-arrays (SiPMs of MPPCs).

• In the context of the LArTPC-Glacier project the operation of a (small) LAr TPC in a mag-
netic field was achieved and a comercial company has produceda feasibility study of a LNG
tanker for 100 kton LAr. There is a very active R&D program to study i) a two phase detector
with very long drift paths, ii) novel charge readout and HV supply and iii) drift properties at
high pressure.

• A large LAr TPC (15 to 50 kton) is being considered in the US as the detector for a long-
baselineνµ → νe appearance experiment. The efficiency for detectingνe’s in such a detector
is ∼80–90% with a negligible neutral-currentπ0 event background. An ambitious R&D
program was approved in 2005 and is underway.

• Matter effects can be calculated rather precisely down to a matter density uncertainty of
about 2% or better, but a dedicated geological study has to beforeseen once the site has been
chosen. A few particular baselines encountering very irregular terrain should be avoided.

• A first estimate was performed of the interplay of final state lepton mass, nuclear effects,
and non-isoscalar target (water) with the conclusion that at a few 100 MeV they impact
measurements of CP asymmetries by several percent. This effect decreases with energy for
the quasi-elastic reaction, and at higher energy may affectalso the pion production channel.
Detector effects have not been studied yet.

• The detectors can take alternative trains of neutrinos produced by stored positive and negative
muons as long as the time distance between trains is above 100ns.

Nevertheless many issues remain open for further study and R&D. A few outstanding points
are listed below.

For what concerns the neutrino factory detectors:

• Priority should be given to a solid study of performance, cost estimate and infrastructure
requirements of the baseline detector for the neutrino factory (MIND) and of its variants
(such as the Indian Neutrino Observatory, INO).

– 4 –
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• The performance of the TASD detector against hadronic backgrounds should be computed.
Pion decay and pion/muon mis-identification could be important given the low de-
tector density.

• The study of the large coils and associated infrastructure for the above has only started and
this is clearly a field that motivates further studies. The super-conducting transfer line (STL)
is probably the most promising option for large magnetic volumes at reasonable cost. A full
engineering design would still need to be done.

• The comparative performance study of ’platinum detectors’should be pushed to a conclu-
sion. Efficiency vs charge confusion background for the electron channel for different setups
(MECC, TASD or LAr) needs to be understood and compared

• The monitoring of the muon beam angular divergence in the storage ring is for the moment
a very challenging concept (a He Cherenkov with extremely thin windows) that needs to be
turned into a demonstrably feasible object. It is not clear that a permanent device can be
devised or if a different system needs to be invented.

• The near detector concepts and the near detector area for theneutrino factory needs to be de-
fined, including in a coherent way the necessary shielding and of the purely leptonic detector
and DIS-charm detector.

• Once a site is considered a study of the matter content of the beam line will be mandatory.

For what concerns the low energy beta-beam and superbeam detectors:

• The priority is rightly given to understanding the feasibility and cost of the Mton-class wa-
ter Cherenkov detector, in order to exploit the synergy withproton decay and supernovae
neutrino detection.

• How shallow can a LArTPC be operated? This was recently studied [75] for shallow depths
(∼ 200 m depth) but it would be good to understand the status for surface operation.

• Whether a giant LArTPC can usefully compete in this energy range should be ascertained
more quantitatively, while the cost and infrastructure/safety implications of it is largely un-
certain.

• The design and even the concept of the near detector station —and the problems related
to the relative normalization of the beta-beam and superbeam when used in combination —
have not really been addressed and constitute one of the major pending issues in addressing
the physics capabilities of this option. There are also fundamental issues associated with
doing physics with low energy events: the effects of lepton mass, nuclear effects, Fermi
motion and binding energy are some, but the different topologies and their effect on relative
acceptance forνµ vs νe events remains largely untouched. At this point in time any claim of
normalization errors (even relative) below 5% remains unestablished.

– 5 –
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2 Beam instrumentation

2.1 Flux control and resulting constraints on the decay ringdesign for the neutrino factory

One of the most significant qualities of the Neutrino Factory, and more generally of a system
where one stores a beam of decaying particles (such as the beta beam) is the potential for excellent
neutrino flux control. The main parameters that govern the systematic uncertainties on the neutrino
fluxes are as follows.

• The monitoring of the total number of muons circulating in the ring,

• Theoretical knowledge of the neutrino fluxes from muon decay, including higher-order ra-
diative effects,

• Knowledge of the muon beam polarisation,

• Knowledge of the muon beam energy and energy spread,

• The muon beam angle and angular divergence.

Beam shape parameters are crucial for the measurement of oscillation length, while the abso-
lute normalisation is essential for the measurement of the mixing angle. The relative normalisation
of the two muon charges plays a crucial role in the measurement of CP asymmetries.

2.1.1 Neutrino fluxes from muon decay

The neutrino energy spectra from negative muon decay at restfollow the following distributions:

d2Nνµ

dxdΩ
∝

2x2

4π
[(3−2x)+ (1−2x)Pµ cosθ ] (2.1)

d2Nν̄e

dxdΩ
∝

12x2

4π
[(1−x)+ (1−x)Pµ cosθ ] (2.2)

wherex≡ 2Eν/mµ , Pµ is the muon polarisation, andθ is the angle between the muon polarisation
vector and the neutrino direction. In a long baseline experiment the detector is located on the same
axis as the Lorentz boost and its size is negligible relativeto the baseline. In this case the neutrino
energy spectrum in the laboratory frame is given by the same formula as above but withx= Eν/Eµ .

2.1.2 Absolute flux monitoring

Monitoring the total number of muons in the ring can be done ina number of ways. The total beam
current can be estimated using a Beam Current Transformer (BCT), the total number of decay
electrons can be estimated using an electron spectrometer,the product of the flux and cross section
can be inferred from a near-by detector and, finally, the absolute normalisation can be obtained
from semi-leptonic neutrino interactions in a nearby detector.

The operation of a BCT in the decay ring could provide fast-response monitoring of the muons
in the ring. There are, however, a few potential difficultiesthat could limit the precision of such a
device, which could normally reach the 10−3 level. The first one is the presence of decay electrons
in the ring, along with the muons. Since all muons decay, the number of accompanying electrons

– 6 –
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decay  electrons
10 GeV 15 GeV5 GeV

Figure 1. A possible muon polarimeter design. The momenta of the decay electrons accumulated in a short
straight section are analysed in a bending magnet in the muondecay ring. Slits in the shielding define the
acceptance of a number of momentum bins.

could potentially be much larger than the remaining muons after a few muon lifetimes. A study
of such decay electrons has been made [4], with the conclusion that for 50 GeV muon momentum,
the decay electrons are lost in the beam elements (or the collimators placed to protect them) after
less than half a turn, either because they are momentum-mismatched or because they lose energy
in the arcs by synchrotron radiation. Consequently their number should be always less than about
2×10−3 of the remaining muons. In addition, most of the losses arisein the straight sections or in
the early part of the arcs, so that a BCT situated just at the beginning of a straight section would see
an even smaller fraction of them. Another worry could be the existence of a moving electron cloud
created by beam-induced multipacting, or by ionization of the residual gas or of the chamber walls.
This has been studied in [5], with the conclusion that the electron cloud will be several orders of
magnitude less than the muon flux itself. In the absence of a significant parasitic current, it can be
concluded that the BCT readings should be precise to the level of a few 10−3, or better. This seems
the most practical way to compare the flux induced fromµ+ andµ− decays.

The decay electrons will be used to measure the polarisationof the beam with a spectrometer
as described below, and in figure1. The same device could in principle be used to monitor the
number of muon decays in an absolute way, especially if one selects the momentum bite where the
electron spectrum is insensitive to the muon polarisation.Certainly this will be a useful tool, as a
cross-check or for monitoring, but a very detailed study of the dependence of the acceptance of this
device on the beam parameters must be performed before a conclusion can be reached.

Knowledge of the flux does not provide knowledge of the cross sections folded with the de-
tector acceptance. This task is traditionally delegated toa near detector. The high flux should make
things very easy. Given the high importance of precision measurements in the Neutrino Factory, it
is likely that a near detector will be an important tool for beam normalisation. Unlike the situation
with conventional pion decay beams, the near detector will in fact be able to measure absolute cross
sections for a large number of exclusive and inclusive processes.

It is worthwhile mentioning, finally, the possibility offered by the measurement of purely
leptonic interaction processes, which have been discussedin [6]. Of practical interest for normal-
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isation is the measurement ofνµ + e− → µ− + νe, which appears as a low-angle forward-going
muon with no recoil. Using the standard electroweak theory,this purely leptonic charged-current
process can be calculated with high precision, and could be measured with a dedicated detector
aimed at measuring also theνe+e− → e− +νe andν̄e+e− → e−+ ν̄e processes. The weakness of
this method is that it only applies to theµ− decay beam, but it could be seen as an overall absolute
normalisation process for the muon flux.

To conclude, there are many tools to monitor and control the absolute flux normalisation in a
neutrino factory, so that the near detectors should be able to provide very accurate measurements
of inclusive and exclusive cross sections, within the detector acceptance. A flux normalisation at
the level of a few 10−3 seems an achievable goal. The relative normalisation of theµ− and µ+

decay beams should be known with similar precision.

2.1.3 Theoretical knowledge of the neutrino fluxes from muondecay

The expressions given above for the neutrino flux in muon decay, (equations2.1 and2.2), do not
include QED radiative corrections, which have been calculated in [7] (see figure2). The dominant
source of corrections is, as can be expected, related to photon emission from the decay electron. For
the electron energy distribution, the corrections are of the order of 1% due to terms proportionanl
to α

π ln(
mµ
me

). It turns out that the neutrino spectrum is insensitive to the electron mass, i.e., the
integration over the system of electron and photons cancelsmass singularities. It can be seen that,
in the forward direction, an overall decrease of the neutrino flux of about 4× 10−3 is observed,
with a larger decrease near the end point. The global decrease can be understood by the overall
softening and angular widening of the neutrino decay spectrum due to photon emission. Since the
overall size of the corrections is small, one can certainly trust the calculated spectrum to a precision
much better than 10−3.

2.1.4 Muon polarisation

Muons are naturally polarised in pion decay. In theπ+ → µ+νµ rest frame, both theνµ and
µ+ have negative helicity. In the laboratory frame, the resulting average helicity of the muon, or
longitudinal polarisation, is reduced from -100% for a pionat rest to< h>=−18% for pions above
200–300 MeV momentum [13]. For a pion of given momentum, muon polarisation is correlated
with muon momentum. It has been argued in [14] that monochromatisation of the pions followed
by i) a drift space to separate muons of different momenta, and ii) collection in successive RF
buckets, should allow separation in different bunches of muons of different polarisations. This
does not change theaveragepolarisation, but creates bunches of different polarisation (up to 50%),
that can be of use for physics, as long as the times of neutrinointeractions are recorded with a
precision of a few nanoseconds.

The muon spin precesses in electric and magnetic fields that are present during cooling and
acceleration, but the muon spin tuneν — the number of additional spin precessions happening
when the muon makes a complete turn — is very low:

ν = aµγ =
gµ −2

2
Ebeam

mµ
=

Ebeam(GeV)

90.6223(6)
.

It has been evaluated [13] that 80 to 90% of the original polarisation will survive allmuon handling
up to the injection into the storage ring. Its orientation will depend on the number of turns that
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Figure 5: Zeroth order and orreted �� distributions at O(�). Distributions plotted for the same
parameters of �g. 2.

Figure 6: O(�) orretion to �� distributions as a funtion of E�. Distributions plotted for the same
parameters of �g. 2.

30

Figure 7: Zeroth order and orreted ��e distributions at O(�). Distributions plotted for the same
parameters of �g.2.

Figure 8: O(�) orretion to ��e distributions as a funtion of E�. Distributions plotted for the same
parameters of �g. 2.

31

Figure 2. Radiative corrections to the muon neutrino (left panels) and electron anti-neutrino (right panels)
fluxes inµ− decay. Top panels: the resulting energy distribution at zero angle. Bottom panels: the relative
change due to theO(α) correction. The overall reduction of flux is due to the additional energy taken away
by photons, which slightly widens the angular distributionof the neutrinos. In order to avoid infinities at the
end point, the quantity plotted isΦ(O(α))−Φ0

Φ(O(α))+Φ0
.

the muons encounter along the accelerator chain, and can be arranged to be longitudinal by an
appropriate choice of geometry and of the energies in the recirculating linacs [12]. As we will see,
this is not necessarily important.

What will happen to the muon polarisation in the decay ring depends in the first instance on
whether its geometry is a ring (race track or triangle) in which the muons undergo one rotation per
turn, or a bow-tie, in which the muon undergoes zero net rotation at each turn.

In the case of a ring, the polarisation will precess. The orientation of the polarisation vector
will be rotated with respect to the muon direction by an anglewhich increases each turn by 2πν .
Unless the energy is chosen very carefully, it will not be aligned, and reduced on average by a fac-
tor 2. At a muon energy of preciselyE = 45.311 GeV, the spin tune is 0.5 and the polarisation flips
during each turn. This would allow the most powerful use of the polarisation for physics purposes,
but absolutely requires that the orientation is correctly chosen at injection, a condition which is oth-
erwise unnecessary in a ring geometry. If no special measureis taken, however, depolarisation will
occur, since particles of different energies will have their spins precess with different spin-tunes.

The muon polarisation can be monitored by momentum analysisof the decay electrons, as
discussed in [8], in a polarimeter that could look like that sketched in figure1. One can expect that
this measurement will be difficult: the relative normalisation of electron rates in the different energy
bins will depend on various muon beam parameters such as its exact angle and divergence, and on
a precise modelling of the beam-line geometry. In a ring geometry, the device will be exposed
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Figure 3. Oscillation with turn number in a fill of the number of electrons in the energy range 0.6–0.8Eµ ,
normalised to the total number of muon decays during the given turn. The oscillation amplitude is a measure
of the beam polarisation, its frequency a measure of the beamenergy, and, if there is no RF bunching, its
decrease with time is a measure of energy spread. The muon lifetime corresponds here to 300 turns. The
beam energy isEµ = 45.311GeV and the energy spread is 3×10−2. On the left, there is no bunching RF in
the muon storage ring, on the right there is RF bunching withQs = 0.03.

to a succession of negative and positive helicity muon bunches, so it will have to perform relative
measurements. These should be sensitive to small effects, with arelativeprecision of a few percent.

The spin precession in a storage ring provides a means of highprecision (10−6 or better) for
energy calibration [9]. As shown in [8], the measurement of the depolarisation can be used to
measure the energy spread with high precision. In this case,the combined effect of precession and
depolarisation ensure that the muon polarisation integrated over a fill averages out to zero with an
excellent precision: simulations show that any residual polarisation is less than 4×10−4.

Depolarisation can be avoided, if the storage ring is equipped with an RF system that ensures
that the muons undergo synchrotron oscillations [12]. By doing this, one loses the possibility
to measure the energy spread from the depolarisation, but one can maintain the muon polarisation.
The average is still essentially zero, but by recording the exact time of neutrino events, one can infer
their bunch number and turn number, and deduce the polarisation of the decay muons. In a ring
geometry either mode of operation is left open, if one can runwith the required RF system on or off.

In the case of a bow-tie, the muons will not depolarise: spin precession is zero no matter what
the muon energy is. This configuration is not as convenient asthe ring for several reasons.

• In a bow-tie geometry, there will be no spin precession, so the energy and energy spread of
the muon beam will not be calibrated.

• The polarisation will not average to zero and one will have tomeasure it based on the mea-
sured electron spectrum. A few percent absolute accuracy seems to be very challenging in
this case, which means that the flux determination will be affected by a sizeable uncertainty,
due to the beam polarisation error.

– 10 –



2
0
0
9
 
J
I
N
S
T
 
4
 
T
0
5
0
0
1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

x 10 2

0 5 10 15 20 25 30 35 40 45 50

neutrino events from muon decay

neutrino energy (GeV)

R = 10 m radius, L = 732 km, 31.4 kt
 3.1020 50 GeV µ+ µ+

CC νe , Pµ+ = +1

CC νe , Pµ+ =  -1

CC νµ , Pµ+ = +1

CC νµ , Pµ+ =  -1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

x 10 2

0 5 10 15 20 25 30 35 40 45 50

neutrino events from muon decay

ν energy (GeV)

R=10m radius, L=732 Km, 31.4 KT
 3.1020 50 GeV µ- µ-

CC νe , Pµ-=-1

CC νe , Pµ-=+1

CC νµ , Pµ-=-1

CC νµ , Pµ-=+1

Figure 4. Event numbers for a detector of density 5 with 10 m radius that is 20 m long, situated 732 km
away from the muon storage ring, forµ+ → e+νeν̄µ (left) andµ− → e−ν̄eνµ (right) beams of 50 GeV. Full
lines show the spectra for the ‘natural’ helicityP = +1 for µ+, and dashed ones for the opposite case. The
CC νe for µ+ with P = +1 and CCνe for µ− with P = −1 are not visible, because the fluxes are almost
exactly zero. The vertical axis gives event numbers per bin of 250 MeV. This plot assumes no muon beam
angular divergence and no beam energy spread.

• It will be difficult to change the sign of the muon beam polarisation.

• Unless the geometry is very carefully chosen, the beam polarisation will be different for the
two long straight sections.

For these reasons, and despite the fact that in principle theuseful beam polarisation is higher in the
bow-tie geometry,the ring geometry is preferredfrom the point of view of beam control.

2.1.5 Neutrino fluxes and muon polarisation

Neutrino spectra with different beam polarisations are given by equations2.1 and2.2. In a long-
baseline experiment, one is at extremely small angles, so that cosθ = 1. In this case, theνe

component of the beam is completely extinct forP = −1. This is due to spin conservation in the
decay: a left-handed muon cannot decay at zero angle into a right-handedνe.

Event numbers can readily be obtained by multiplying by the cross section. They are shown
in figure 4 for a 10 m radius detector 20 m long situated 730 km away. Sincethe neutrino and
anti-neutrino cross sections are in the ratio 1/0.45, negative muons provide enrichment inνµ and
positive ones inνe.

It is clear from figure4 that the combination of muon sign and polarisation allows large vari-
ations in the composition of the beam, in a controlled way. Since detector studies show that the
muon sign can easily be determined in a charged-current (CC)(anti)neutrino event, but that the
electron sign is much more difficult, we have tried to use the variation of electron neutrino flux
with muon polarisation to infer a signal ofνµ → νe oscillations to be compared (for a T-violation
test) with theνe → νµ oscillation measured with the wrong-sign muons. Unfortunately, even for
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Figure 5. Neutrino event spectra for different beam divergences; Upper left: σθx = σθy = 0.01 mµ/Eµ ;
upper right:σθx = σθy = 0.05 mµ/Eµ ; lower left: σθx = σθy = 0.2 mµ/Eµ ; lower right: σθx = σθy =

0.5 mµ/Eµ . It is clear that beam divergence results in a loss of events,and in a sizeable distortion of the
spectra and of their muon polarisation dependence.

40% beam polarisation, the improvement in the sensitivity to CP/T violation is no more than the
equivalent of a factor of 1.5 to 2 in statistics. Certainly, it appears that polarisation is more useful as
a tool to measure the beam properties than as a physics tool. Nevertheless, these statements might
be parameter-dependent, and should be revisited once the oscillation parameters are better known.

2.1.6 Effect of beam divergence

The opening angle of the neutrino beam is typically 1/γ , whereγ = Eµ/mµ . As soon as the beam
divergence is comparable with this natural opening angle, alarge fraction of the flux will be lost.
This is shown for 45.311 GeV muons in figure5. It is clear that beam divergence results in a loss
of events, and in a sizeable distortion of the spectra and of their muon polarisation dependence. A
beam divergence not larger thanσθx = σθy = 0.2mµ/Eµ seems to be desirable, if one wants to
avoid a large sensitivity of physics results upon the experimental determination of the muon beam
parameters.
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Figure 6. The relative event rates for muon anti-neutrinos (top) andelectron neutrinos (bottom), for various
polarisation values as a function of the beam divergence, parametrised as 1/nγ.

This effect has been studied more precisely in [10], where event numbers are calculated for
various polarisations and divergences. The impact of the muon beam divergence on the neutrino
event rate can be seen in figure6. The first conclusion one can draw from these plots is that, for
a given number of muons, the highest flux is obtained for smallmuon beam divergence. In order
to keep the event rate loss due to the muon beam divergence below 5%, the divergence should be
close to 0.1/γµ .

From the curves in figure7, one can determine the relative error of the predicted eventrate,
given the uncertainty in the knowledge of the beam divergence itself. For example, if the beam
divergence is 0.1/γ and is known with a relative precision of 10%, theνµ andνe event rates can
both be predicted with an accuracy of about 0.75%. For a divergence of 0.2/γ , the uncertainty on
the flux would be 2.5%. As we will see, however, the knowledge of the beam divergence is unlikely
to be a constant relative fraction.

One can turn the argument around, and request that the beam divergence be 0.1/γ and known
to a relative precision of 1.5%, so that the corresponding uncertainty on flux is only 10−3. It is
clear that in this case the muon beam divergence will need to be measured. For a beam of 50 GeV,
the beam divergence is 200 micro-radians and the requirement is that it should be known to 3
micro-radians.

As a measurement device, one could imagine a gas Cherenkov detector focusing the Cherenkov
radiation in such a way as to make an image of the muon beam direction, as sketched in figure8.
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Figure 8. Schematic of a muon beam divergence measurement device. A low-pressure He gas volume is
contained by windows (one of which must be transparent) within a straight section of the the muon decay
ring. The Cherenkov light is collected by a parallel to pointoptics in the direction of interest, so as to provide
an image of the angular distribution of particles in the focal plane.
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This has been studied in [11], with the conclusion that for 200 micro-radians divergence, a preci-
sion of a few % can be achieved. The additional multiple scattering introduced by the device leads
to a growth of emittance during the muon fill, by a few tens of micro-radians, which is small and
will be measured. Since the resolution is dominated by optical imperfections, diffraction effects
and heating effects in the gas of the Cherenkov detector, they act as an additional experimental
smearingσexp added in quadrature to the true beam divergenceσbeam. In the scheme of figure8,
the largest effect is optical diffraction, which amounts to30 micro-radians. It is easy to show that

the correction for experimental resolution is∆σbeam
σbeam

=
∆σexp

σexp

(

σexp

σbeam

)2
.

This makes the beam divergence progressively harder to measure as it becomes smaller. As-
suming that the experimental error is 30 micro-radians and is known with a precision of 30% of
its value, the above gives a flux uncertainty of 5× 10−4, more or less independent of the beam
divergence in the range of 0.05 to 0.2.

In conclusion, the requirement that the beam divergence be no greater than 0.1/γ ensures
that the corrections and uncertainties to the neutrino fluxes remain small (below 1%), even if one
should rely on the accelerator properties themselves. In order to achieve a higher precision a direct
measurement of the beam divergence will be necessary — and isprobably feasible. If relaxing this
condition would allow a larger muon flux, a divergence measurement device becomes mandatory,
and would ensure that the uncertainty on the neutrino flux remains well below 10−3.

2.1.7 Summary of uncertainties in the neutrino flux

A first look has been given to the sources of systematic uncertainties in the neutrino fluxes and their
possible cures.

• The monitoring of the total number of muons circulating in the ring can be inferred from
a Beam Current Transformer with a precision of the order of 10−3 or better. The decay
electrons vanish quickly and are not a problem.

• The theoretical knowledge of the neutrino fluxes from muon decay is not an issue. Radiative
effects have been calculated: they amount to around 4× 10−3, with an error that is much
smaller [7].

• The muon beam polarisation determines the flux directly, both in shape and magnitude. It
seems delicate to determine its value with a precision much better than a few %. In a ring ge-
ometry, however, polarisation precesses and averages out with high precision (a few×10−4).
This is a strong argument in favour of a ring geometry againsta bow-tie geometry.

• The event rate varies like the muon beam energy to the third power, but the muon beam
energy can be inferred very precisely from the muon spin precession. A polarimeter idea has
been outlined, and the measurement should cause no difficulty. Beam polarisation can be
preserved if an RF system is installed in the decay ring. The energy spread can be derived
from the depolarisation pattern, in special runs with no RF if necessary.

• The muon beam angle and angular divergence have an importanteffect on the neutrino flux.
For a given number of muons, the smaller the beam divergence,the higher the flux. Thus the
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beam divergence in the straight section of the muon decay ring should be made as small as
possible, but should not constitute a limit on the number of stored muons.

• Measurement devices for the beam divergence will be necessary, but they can probably be
designed and built to ensure a flux uncertainty below 10−3.

In addition, the near detector stations should allow measurements of cross sections with high
precision. The inverse muon decay reactionνµ +e− → µ−+νe offers the possibility of an absolute
normalisation of the flux.

We conclude that, provided the necessary instrumentation is foreseen, the Neutrino Factory
flux should be known with a precision of the order of 10−3.

2.2 Flux control for Beta beams and Super Beams

The International Scoping Study did not explicitly look at flux control and beam instrumentation
for Beta beams and Super Beams. Beta beams are being considered within the Eurisol Beta Beam
Design Project [15]. The default Beta Beam considered consists in the decay of accelerated ra-
dioactive ions, such as6Heand18Newith γ ∼ 100−350 (even though higher energy beams from
the decay of8Li and8B with γ ∼ 350 have been recently proposed). The details of the storagering
and decay sections are being considered by the Eurisol project. However, some of the concepts
developed for monitoring the number of muon decays in a Neutrino Factory are also applicable to
monitor the number of radioactive ion decays in the Beta Beam.

There are similar requirements for flux control at a Beta Beamfacility as are needed for a
Neutrino Factory. Polarization of the beam is not an issue ina Beta Beam, but the number of
radioactive ions in the storage decay ring can be determinedwith a Beam Current Transformer.
The divergence of the beam would need to be measured as well. ACherenkov detector as proposed
above for a Neutrino Factory would be able to measure the divergence of a Beta Beam, provided
that it did not affect the stability of the beam. In addition to these beam monitoring devices, a near
detector would also be needed (see section3).

There is extensive experience in the design of conventionalbeams of neutrinos from pion de-
cay, so understanding the flux control requirements for these beams will determine the parameters
needed for beam monitoring at a Super Beam. Recent examples include the MINOS beam line [16],
the CERN to Gran Sasso (CNGS) beam [17] and the beam line for the T2K experiment [21].

The NUMI beam at Fermilab [16] that supplies neutrinos for the MINOS experiment [18] con-
tains a system for flux monitoring of the neutrino beam. The monitoring system presently consists
of ionization chambers [19] placed at the end of the decay pipe, to measure muons, undecayed
mesons, and protons that did not react in the target, and in three alcoves dug into the dolomite rock
to measure fluxes of muons that are produced along with the neutrinos. These chambers provide
information to determine the neutrino beam alignment and asa beam monitor, to ensure target
integrity and horn focusing.

The CERN to Gran Sasso (CNGS) neutrino beam, with aνµ average energy of 17.4 GeV [20],
is well matched to theντ appearance experiments at the Laboratori Nazionali del Gran Sasso
(LNGS), OPERA [91, 92] and Icarus [68]. A misalignment of the horn by 6 mm or the reflector by
30 mm, or if the proton beam is off-target by 1 mm, or if the CNGSbeam is misaligned by 0.5 mrad,
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may cause a drop in neutrino flux of 3%. Monitoring of these parameters is achieved by the Tar-
get Beam Instrumentation Downstream (TBID) and the muon ionization chambers installed in the
muon pits downstream of the beam stop. The TBID contains secondary emission monitors, consist-
ing of 12µm thick titanium foils, and check the efficiency of the targetconversion (by comparison
with an upstream station) and the alignment of the beam. The muon ionization chambers measure
the muon intensity, the muon profile and the centre of the beam. There are 17 fixed monitors in a
cross, and one moveable chamber for relative calibration. Since OPERA and Icarus plan to perform
an appearance search for tau neutrinos, it is not as important to measure theνµ flux with a similar
precision to a disappearance measurement. Hence, a near detector at the CNGS was not deemed to
be an essential component of the beamline and was not built given the cost of a near cavern.

The T2K experiment [21] exploits an off-axis beam at angles between 2◦ and 3◦. It monitors
the muon flux on-axis, downstream from the beam dump, and serves as a real-time status monitor
sensitive to the proton intensity, proton beam position on target and the performance of the horn.
The detectors will be a combination of He gas ion chambers andsemi-conductor detectors. In
addition, there will be an on-line neutrino flux monitor, in the form of an array of iron-scintillator
stacks, to determine the centre and profile of the on-axis neutrino beam. From the on-axis muon and
off-axis flux monitors, one can deduce the off-axis flux, which will be compared with the ND280
(Near Detector at 280 m from the target) [22, 23]. A similar strategy would probably have to be
adopted for any other off-axis super beam scenario.

3 Near detectors

3.1 Aims

In order to perform measurements of neutrino oscillations at a neutrino facility, it is necessary to
establish the ratio of neutrino interactions in a near detector with respect to the far detector. Hence,
the careful design of a near detector and of the beam instrumentation is crucial to measure the
flux, energy and cross-sections of the incident neutrinos [24] to be able to reduce the long baseline
neutrino oscillation systematic errors.

The present generation of near detectors (e.g. for K2K and MINOS) have been concentrating
on disappearance measurements, which require the near-to-far detector comparison of the main
νµ component of the beam. Life appears to be somewhat easier when searching for the appearance
measurement, at least at first, when the statistics in the appearance channel are limited. However,
the physics of the golden channel is to measure precisely theappearance probability and to compare
it between neutrinos and anti-neutrinos, or neutrinos of different energies or baselines, to establish
CP violation and/or matter effects. All of a sudden the ratioto worry about is not only near-to-far,
but electron-to-muon neutrino cross-sections. Indeed, when measuring the CP asymmetry

ACP =
P(νµ → νe )−P(νµ → νe )

P(νµ → νe )+P(νµ → νe )
, (3.1)

a troublesome quantity will appear, the double ratio:

DR=
σνµ /σνe

σνµ
/σνe

, (3.2)
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whereσνµ really meansσνµ × ε −B including correction for efficiencyε and backgroundB.
Although it would seem that many systematic errors would cancel in this ratio, this is only partially
true. The effects that ensure a deviation of this quantity from unity are quite difficult to master:

• the muon mass effect;

• Fermi motion and binding energy;

• the non-isoscalarity of the target (this is particularly relevant for water where anti-neutrinos
and neutrinos interact very differently on the free protons);

• the different neutrino and antineutrinoy distributions; and

• the different appearance of the final state lepton in the detector.

These effects are particularly relevant for the low energy neutrinos, as discussed in appendixD.5.
Experimental certification will require a dedicated designof the beam line and near detectors, and
probably measurement of cross-sections for all channels quoted above, either at the absolute level
or in relation with one of the four channels.

The shape and technology of a near detector depends on the type of facility to be considered
(whether Super Beam, Beta Beam or Neutrino Factory). The main requirements of near detectors
are that they should measure and control the neutrino flux, the beam angle and direction, the neu-
trino energy, all the relevant cross-sections and the background to the far detector. Backgrounds
differ depending on the far detector technology and the energy of the neutrino beam, so the require-
ments of a near detector for each of the facilities will be different in each case. In the following
sections, we will look at the requirements for a near detector at a Beta Beam, a Super beam and a
Neutrino Factory.

3.2 Near detector at a Beta beam and Super Beam

The near detector at a Beta Beam or a Super Beam was not considered in detail by the International
Scoping Study. However, the average energy of the neutrino beam in these two scenarios will
demand a detector that is capable of observing low energy neutrino interactions, as discussed in
appendixD. It remains that the measurement of cross-sections in the near detectors for both muon
neutrinos and electron neutrinos is one of the essential tasks of the near detector program for Beta
beam and Super Beam experiments, possibly in association with each other; this will have to be
studied carefully if these are to be viable options.

For Super Beams, the detector will need to have a magnetic field to be able to distinguish
neutrinos from anti-neutrinos as in the Near Detector currently being designed for T2K [22]. The
average energy of the neutrinos will be typically from 500 MeV to a few GeV, so the dominant
interactions will be charged current quasi-elastic and neutral current elastic interactions, neutral
and charged current single and multi-pion production, and coherent pion production. At these
energies, it is extremely important to have a detector target with the same nuclear mass (A) as the
far detector, or, at least, to understand the dependency of the cross-section with the nuclear mass.
Other nuclear effects at low energy, such as Pauli blocking or Fermi Motion are very important to
be taken into account so, typically, one would aim to measurethese in light nuclei. These data will
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be better known from the Minerνa experiment [131], but the near detector at a high intensity Super
Beam or Beta Beam should be able to carry out these measurements with improved accuracy.

For Beta Beams, there is only one species of neutrino, so a magnetic field is not essential in
the near detector. All other considerations of cross-section measurements at low energy remain the
same as in the Super Beam case.

3.3 Near detector at a neutrino factory

For a neutrino factory, we have discussed the beam instrumentation that will measure the beam
angle, the divergence and the polarization of the muons in the storage ring. In addition, a near
detector will need to be able to measure the neutrino flux, theneutrino beam angle and its diver-
gence, the neutrino energy, the neutrino cross-sections and a measurement of the background to
the oscillation signal at the far detector, which includes ahigh statistics measurement of the charm
background from neutrino interactions.

There is also a rich physics programme that can be carried outat a near detector [25, 26].
Deep inelastic, quasi-elastic and resonance scattering reactions can be studied with unprecedented
accuracy. Other measurements include the determination ofthe weak mixing angle sin2θW from
the ratio of neutral to charged current interactions, measurements of the parton distribution func-
tions (both polarized and unpolarized) in a region of phase space that is complementary to those
determined by HERA, a measurement of the strong coupling constant and other effects such as
nuclear reinteractions and nuclear shadowing. The large sample of charm events reconstructed for
the neutrino oscillation background studies can be used to measure the charm background to the
oscillation signal but can also be used to measure the CKM matrix elementVcd, and to search for
CP violation inD0−D0 mixing. More accurate measurements ofΛ polarization might shed more
light on the spin content of nucleons.

This varied physics programme requires a near detector (or detectors) with high granularity
in the inner region that subtends to the far detector. The active target mass of the detector does
not need to be very large. With a mass of 50 kg, one would obtain109 charged current neutrino
interactions per year in a detector at a distance of 30 m from the muon storage ring, with the straight
decay sections being 100 m long.

There are a number of technological choices for a near detector at a neutrino factory, to achieve
the general aims stated above. Due to the nature of neutrino beams, one may choose to build a
multi-purpose detector that will carry out the physics programme, or instead have a number of
different more specialised detectors for individual topics. However, some of the features needed
in a near detector include high granularity, to compare the subtended angle between near and far,
a magnetic field for charge separation, and muon and electronidentification for flavour determi-
nation. More specific needs also include excellent spatial resolution to be able to carry out mea-
surements of charm events, the possibility of including different targets for nuclear cross-section
determination and maybe the possibility to polarize the target for measurements of polarized parton
distribution functions.

3.3.1 Flux normalization and control

Neutrino fluxes from muon decay are given by eqs. (2.1) and (2.2). These fluxes are readily cal-
culable, with small theoretical uncertainties (an accuracy of better than 10−3), as was shown in
section2.
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Figure 9. Flux of νµ (left panel) andνe (right panel) at a detector 2500 km from a neutrino factory with a
20 m radius, subtending an angle of 8µrad., from the decay of 50 GeVµ+.

A neutrino factory offers the possibility of having an unprecedented number of neutrino inter-
actions in a near detector. The position of the near detectorat the end of the straight decay section
of the muon storage ring is a crucial parameter to determine the rate and spectrum of the neutrino
interactions. The systematic errors in the ratio of fluxes between the near and far detector are re-
duced when the spectrum in the near detector is similar to thespectrum at the far detector. For
example, a far detector at 2500 km, with a radius of 20 m subtends an angle of less than 8µrad.
The flux ofνµ (left panel) andνe (right panel) from the decay of 50 GeVµ+ for this configuration,
with average energies of 35.0 GeV and 30.0 GeV is shown in figure 9.

At the near detector, one needs to be able to subtend a similarly small angle, and this can be
achieved by varying the distance to the source or by improving the spatial resolution of the detector.
For example, as shown in figure10, at a distance of 130 m from the decay point of the 50 GeVµ+,
one obtains distributions that are quite different to the far detector (average energies forνµ and
νe of 21.6 GeV and 18.5 GeV), while at a distance of 1 km from the decay point of theµ+, the
distributions now look quite similar to those of the far detector (average energies forνµ andνe

of 34.1 GeV and 29.2 GeV). The difference in the spectra between near and far detector can be a
source of systematic error in predicting the far detector flux from the migration of the near detector
flux. If the near and far detector fluxes are similar, then the systematic error in the extrapolation
from near to far can be reduced.

Another source of difference between the far and near detectors is that the far detector effec-
tively sees a point neutrino source, while the near detectorsees a line source, from the decay of
the muons along the decay straight in the muon storage ring. For example, let us assume we have
a straight section of length 500 m, and we place the near detector at a distance of 500 m from the
end of the straight section. We assume that the muons decay uniformly along the decay section,
that the angular distribution is Gaussian with aσθ = 0.5×10−3, and that the energy of the muons
is 40 GeV withσE = 80 MeV. If negative muonsµ− decay, we obtain the flux distributions shown
in figure 11, for 105 muon decays simulated. We will assume 1021 muon decays in one year of
operation of the neutrino factory.
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Figure 10. Flux of νµ (left panel) andνe (right panel) at a near detector with a 0.5 m radius, 130 m from
the decay of aµ+ (top). Flux ofν µ (left panel) andνe (right panel) at a near detector with a 0.5 m radius,
1 km from the decay of aµ+ (bottom).

One of the main issues to minimise systematic errors in the near and far detector is to determine
the flux and cross-sections separately, since normally one obtains the productΦ(Eν)×σ(Eν). In
order to separate the latter, one can use the inverse muon decay reaction:νµ +e− → νe+ µ−, with
total cross-section:

σ(νµe−) =
G2

F

π

(

s−m2
µ
)2

s
, (3.3)

and muon production through annihilation:νe+ e− → νµ + µ−, with the following cross-section
in the Standard Model [27]:

σ(νµe−) =
2G2

F

π

(

s−m2
µ
)2(

EeEµ +1/3Eν1Eν2
)

s2 , (3.4)

wheres= 2meEν .

The production threshold for these reactions isEν >
m2

µ
2me

= 10.9 GeV. The signature is a single
outgoing muon without any visible recoil energy at the interaction point, and with a transverse
momentum kinematically constrained to bepT ≤ 2meEµ . These measurements were performed,
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Figure 11. Number of neutrinos per cm2 per 105 muon decays, at 500 m from the end of a decay straight
of 500 m at a neutrino factory. Top left panel:νµ andP = +1; top right panel:νµ andP = −1; bottom left
panel:νe andP = +1; bottom right panel:νe andP = −1.

for example, by the CHARM-II experiment [28], in which they extracted the inverse muon decay
cross-section by observing the lowpT excess above the 10.9 GeV threshold, with an efficiency of
86.9%. A similar efficiency and much more accurate background estimation should be achievable
at a neutrino factory.

Alternatively, one can also use the elastic scattering interactions: νµ + e− → νµ + e− and
νe+e− → νe+e− that also have calculable rates:

dσ(νµe−)

dy
=

2G2
FmeEν

π

[

(

−1
2

+sin2θW

)2

+sin4 θW(1−y)2

]

(3.5)

and
dσ(νee−)

dy
=

2G2
FmeEν

π

[

(

1
2

+sin2θW

)2

+sin4 θW(1−y)2

]

. (3.6)

The signature for these neutrino-electron events is a low angle forward going lepton with no nu-
clear recoil. A similar signature was used by the CHARM-II [29] detector to measure sin2θW

from neutrino-electron elastic scattering. An excess of events of neutrino-electron scattering can
be observed for low values of theEθ2 variable (between 5 and 72 MeV) over the predominant
background from neutral currentπ0 production andνe quasi-elastic scattering. A full analysis has
not been carried out yet but an accurate fit to the background can be carried out at a neutrino fac-
tory, in a similar manner to the CHARM-II experiment, where the number of observedνµe− events
was 2677, with a background of 3886.

The reconstructed spectra ofνµ + e− → νe + µ− and νe + e− → νµ + µ− can be seen in
figure12 in a detector of radius 1 m, thickness 30 cm filled with scintillator (ρ = 1.032 g cm−2),
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Figure 12. Energy spectrum ofνµ (green) andνe (blue) passing through a cylinder with radius 1 m and
thickness 30 cm, and at 500 m distance from the end of the straight section for polarizationP= +1 (top left)
andP = −1 (top right). Red line indicates the energy threshold. Inverse muon decayνµ + e− → νe+ µ−

(green) andνe+e− → νµ + µ− (blue) events in a detector of radius 1 m, thickness 30 cm and density 1.032
g cm2 at a distance of 500 m from the end of the straight section of the decay ring for polarizationP = +1
(bottom left) andP = −1 (bottom right).

for a total mass of 1 tonne. The neutrinos originate from the decay of 40 GeV muons in the 500 m
straight section of the decay ring at a neutrino factory and the detector is 500 m from the end of the
straight section.

Table1shows the event rate expected from the inverse muon decay reactions. It is clear that the
event rate is strongly dependent on the polarization and canbe used as an independent verification
of the polarization of the decay muons. Since the two reactions (νµe− andνee−) are practically
indistinguishable, the statistical error in the flux will come from the sum of the two, an accuracy of
better than 10−3 in the flux using these reactions can only be achieved for a muon energy of more
than 40 GeV within one year of data taking. However, the efficiency and the background for these
reactions have not been determined yet, so the statistical significance will be diminished.

3.3.2 Cross-sections and parton distribution functions

The near detector will carry out a programme of cross-section measurements, necessary for the
far detector [30]. Due to the experimental control of the flux, it will be possible to extract the
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Table 1. Total number of muons per year from inverse muon decay reactions produced in a cylindrical
detector with radius 1 m, thickness 30 cm and density 1.032 g/cm3 (scintillator, total mass 1 ton), 500
m distant from the end of the straight section of muon storagering (1021 muon decays per year). The
last column shows the total number of muons per year producedin the same cylinder from inclusive CC
reactions.

Eµ (GeV) Polarization νµe− → νeµ− νee− → νµ µ− νµN

40 +1 6.87×105 5.81×105 1.92×109

40 -1 1.67×106 6.97×104 2.81×109

30 +1 2.02×105 1.97×105 1.32×109

30 -1 5.89×105 1.60×104 1.91×109

20 +1 1.83×104 1.14×104 8.07×108

20 -1 7.83×104 7.76×102 1.14×109

cross-section of the different interactions to be studied,such as deep inelastic, quasi-elastic and
elastic interactions,∆+ and∆++ resonance and single and multi-pion production (see appendix D).
The aim will be to cover all the available energy range, with particular emphasis at low energies
(where quasi-elastic events dominate), since this might beneeded to observe the second oscillation
maximum at a far detector. At these lower energies, nuclear reinteractions and shadowing as well
as the role of Fermi motion play a role, and these effects needto be determined. Very low energy
interaction measurements might be achievable using a liquid argon TPC, or other very light tracking
detector. We should envisage also the possibility of using different nuclear targets, as well as the
direct access to nucleon scattering from hydrogen and deuterium targets.

3.3.3 Charm measurements

The wrong-sign muon signature of the neutrino oscillation “golden channel” can be identified,
for example, in a magnetised iron calorimeter, by distinguishing between muons, hadrons and
electrons, and measuring the charge of the lepton. The main backgrounds for this signal are due to
wrong charge identification and to the production of wrong sign muons from the decay of a charm
particle (for example, from aD−), produced either in neutral current interactions or in charged
current interactions where the primary muon has not been identified. The charm background is the
most dangerous at high energies, but a combined cut in the momentum of the muon (Pµ) and its
isolation with respect to the hadronic jet using the variableQt = Pµ sin2 θµh, whereθµh is the angle
between the muon and the hadronic shower (see section4.1.1) can reduce the background to the 8×
10−6 level for an efficiency of 45% [48]. However, this background reduction relies on an accurate
knowledge of theQt distribution of charm particles that should be measured at anear detector.

A near detector should be able to operate at a high rate and have very good spatial resolution,
to be able to distinguish primary and secondary vertices needed to identify charm events. It should
also have a small radiation length so that it may distinguishelectrons from muons in a magnetic
field. This can be achieved by a vertex detector of lowZ (either a solid state detector, such as
silicon, or a fibre tracker) followed by tracking in a magnetic field and calorimetry, with electron
and muon identification capabilities [31]. A possible near detector geometry could be fit into the
NOMAD dipole magnet [32], currently being used for the T2K 280 m detector [22] (figure 13).
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Figure 13. Possible geometry for a near detector at a neutrino factory.

A prototype silicon detector, consisting of four passive layers of boron carbide (45 kg) and
five layers of silicon microstrip detectors (NOMAD-STAR) was implemented within the NOMAD
neutrino oscillation experiment [33, 34]. Impact parameter and vertex resolutions were measured to
be 33µm and 19µm respectively for this detector. A sample of 45 charm candidates (background
of 22 events) was identified [35]. The total charm meson production rate found was 7.2± 2.4%
of the νµ charged current rate, at an average energy of 33 GeV, which compares well with other
experiments assuming the semi-leptonic branching ratio ofcharm particles [36] (see figure14).
An efficiency of 3.5% forD0 andD+, and an efficiency of 12.5% forD+

s were achieved. Even
with these low efficiencies, one could obtain more than 3×106 charm events per year. However,
using a fully active silicon pixel detector with more layerscan provide further improvements. For
example, 18 layers of 500µm thick silicon of dimensions 50×50 cm2 (total silicon area of 4.5 m2)
corresponds to 52 kg of silicon. Efficiencies for reconstructing charm events should vastly improve
with this geometry. Monolithic Active Pixel (MAPS) [37, 38] or DEPFET [39] detectors would be
good candidates for this type of silicon technology.

Another possibility for a near detector dedicated to the study of charm is an emulsion cloud
chamber followed by a tracking detector such as a scintillating fibre tracker (similar to OPERA [91]
or CHORUS [40]). Emulsion technology has already demonstrated that it isa superb medium for
the study of charm [41–46] due to its unrivalled spatial resolution. The main issue, however, is
whether it can cope with the high rate that will be observed ata neutrino factory.

In addition to the important measurement of the oscillationbackground, this sample of charm
events can be used to determine the strange quark content of the sea, the CKM parameterVcd

to unprecedented accuracy and search for CP violation inD0-D0 mixing. The sign of the lepton
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Figure 14. Opposite sign dimuon rate of NOMAD-STAR and other experiments. Overlayed is a charm
mass fit of 1.3 GeV/c2 [36].

produced at the primary vertex can be used to tag the initial charm particle, with the decay products
determining whether there was any change in the flavour of thecharm meson [26].

3.3.4 Outlook

The near detector at a neutrino factory is an essential ingredient in the overall neutrino factory com-
plex, necessary to reduce the systematic errors for the neutrino oscillation signal. There are many
choices for a detector technology that could be implemented. Liquid argon TPCs in a magnetic
field would be able to carry out most of the near detector programme. Also, more conventional
scintillator technology (similar to Minerva [131]), a scintillating fibre tracker or a gas TPC (like in
the T2K near detector [22]) would also be able to perform cross-section and flux control measure-
ments. However, it seems likely that only silicon or emulsion detectors can achieve the necessary
spatial resolution to perform the charm measurements needed to determine the background for the
oscillation search. It is desirable that the target nuclei for the near and far detectors be the same,
although this may not be easy to achieve. At low energies, where quasi-elastic, diffractive and co-
herent scattering dominate it is clearly an advantage to have the same nuclei, but at high energies,
where deep inelastic scattering dominates, it is more important to have an accurate measurement of
the cross-sections, so spatial resolution should be a more important factor. All of these options and
more detailed studies shall be explored further within the context of the International Design Study.

4 Far detectors

4.1 Tracking calorimeters

In a Neutrino Factory theνe → νµ oscillation channel, the so-called golden channel, provides
the cleanest experimental signature since it only requiresthe detection of “wrong-sing muons”
(ws-muon) — muons with the opposite charge to those circulating in the storage ring — in a
detector with charge measurement capabilities. Muon reconstruction is well understood and can be
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performed with high efficiency keeping a negligible background level. Assuming stored positive
muons, the main backgrounds for the ws-muon search are [47, 48]:

• right-charge muons whose charge has been misidentified, inνµ CC events.

• ws-muons from hadron decays and ws-hadrons misidentified asmuons inνµ or νe NC events,

• ws-muons from hadron decays and ws-hadrons misidentified asmuons inνµ or νe charge
CC when the main lepton is not identified.

A detector aiming to study the golden channel should be able to identify muons and measure
their momenta and charge with high efficiency and purity. Magnetized iron calorimeters have
been considered in the past [47]–[51]. The ws-muon detection efficiency can be kept above 50%
for a background level of the order of 10−5. This kind of detector is extremely powerful for the
measurement of very smallθ13, reaching values ofsin2(2θ13) below 10−4. However, they may have
trouble in studying CP violation because the high density ofthe detector prevents the detection of
low energy neutrinos (below few GeV), which could provide very valuable information for the
simultaneous measurement ofδCP andθ13.

An alternative to iron calorimeters, which follows the NOνA experiment [59] guidelines, has
been recently considered. A magnetised version of Totally Active Scintillator Detectors (TASD),
could be very efficient for the ws-muon search, even for neutrino energies below 1 GeV. The
non-magnetised TASD detector (as NOνA) would be a good candidate for lower energy beams in
the few GeV range, as WBB or Beta-Beams. The physics performance of such a detector in those
scenarios has been discussed elsewhere [3]. In this section the magnetised fully active and iron
calorimeters are described.

4.1.1 Magnetised iron calorimeters

The wrong-sign muon search at a neutrino factory requires a very massive detector with good
muon and muon charge identification capabilities. Magneticiron calorimeters can fulfil these re-
quirements using well known technologies. Indeed, they areconceptually similar to the existing
MINOS detector [52], but with a mass one order of magnitude larger. Several complementary
studies have being conducted so far: the Magnetic Iron Neutrino Detector (MIND) [47–49] (called
LMD in the past) and Monolith [49, 50]. Recently, a new option, the Indian Neutrino Observatory
(INO) [51], similar to Monolith, has been proposed to study the goldenchannel at 7000 km.

In this section the results of the MIND study are presented. The conceptual design of the
MIND detector consists of a sandwich of 4 cm thick iron platesand 1 cm thick detection layers,
with transverse dimensions 14×14 m 3. The detector has a length of 40 m and a total mass of
60 kton. The fiducial mass is of the order of 50 kton.

The nature of the detection layers is not yet specified. A possible choice could be either solid
(as MINOS) or liquid (as NOνA) scintillator bars. The radiation length of plastic scintillator is as-
sumed for the moment. A transverse resolution,ε , of 1 cm in both coordinates is considered. The
measurement of the charge of the muon forces the detector to be magnetised. A realistic detector
would use a toroidal field produced by a superconducting coiltraversing the detector longitudinally
(as MINOS). This implies however unnecessary complications from the point of view of the recon-
struction program, at this stage of the analysis. In this conceptual design an average dipole field of
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Figure 15. On the left panel, distribution of the true∆L. On the right panel neutrino energy resolution as
a function of the true neutrino energy (solid line). The dashed line corresponds to contribution of the muon
momentum measurement, while the dotted line is the hadronicenergy resolution.

1 Tesla (1.3 Tesla in the iron plates) in the Y direction is used. From the performance point of view
both are similar except by the small radial decrease of the toroidal field (see figure23), which can
be ignored for the moment.

To study the performance of the MIND detector a Monte Carlo simulation based on the
GEANT 3 package [55] has been performed. Deep inelastic (DIS) neutrino interactions have been
generated using the LEPTO package [56]. From the point of view of computing time a full sim-
ulation is not practical because background rejection has to be studied to the level of 10−6, which
requires more than 106 events for each kind of background. Thus the MIND study is based on a
fast simulation in which the electronic response of the detector is not simulated and a smearing of
the relevant physics quantities is used instead. The physical quantities used in the analysis are the
muon momentum (Pµ), the muon angle (θµ ), the hadronic energy (Eh) and the hadronic angle (θh).
In previous analyses [47–49] all of them were smeared as in the MINOS proposal [52]. In this
analysis a better hadronic angular resolution, as reportedby Monolith [54], is used.

Muon identification. Neutrino interactions in such a detector have a clear signature. νµ CC or
νµ CC events are characterized by a muon, easily seen as a penetrating track of typically sev-
eral metres length, and a shower resulting from the interactions of the final-state hadrons, which
extinguishes at short distances. Thus, the identification of muons can be easily done by range.
Figure15-left shows the distribution of∆L = Lµ −Lh, whereLµ andLh are respectively the lengths
travelled respectively by the longest muon and hadron inνµ CC events. The muon identification
criterion is set as follows: a particle will be identified as amuon if it goes a given length∆L —
to be optimised — beyond any other particle in the event. Notice that this is a very conservative
approach since it assumes that the muon and the hadronic shower have the same direction.

Energy resolution. An estimator of the neutrino energy,Eν , is the total visible energy in the
event,Evis, which is the sum of the muon and hadron shower energies. The first can be estimated
either by range or by curvature for fully contained muons andonly by curvature when the muon
escapes the detector. A momentum resolution of(3.5Pµ + 0.022P2

µ)%, as an approximation to
the one quoted in the MINOS proposal, is used for the range measurement, while the resolution
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Figure 16. Charge misidentification background as a function of momentum for different configurations
of MIND, assuming a constant average field of 1 Tesla.ε is the transverse resolution,ν is the hit finding
inefficiency andd the distance betweeen measurement planes.

obtained by curvature is computed using the Gluckstern formula [57]. On the other hand, the
hadron shower energy is computed by calorimetry, using the resolution quoted in the MINOS
proposal:δEh/Eh = 0.03+0.76/

√
Eh. Figure15shows the averageEν resolution as a function of

Eν for νµ CC events. The contributions of the hadronic shower and the muon are indicated. The
former clearly dominates theEν resolution.

Charge identification. As mentioned above, charge misidentification of primary muons in νµ

CC interactions constitutes an important background to thews-muon signal. Figure16 (from
ref. [49]) shows the charge misidentification rate for different configurations of the MIND detector
assuming a constant average magnetic field of 1 Tesla (independently of the iron distribution). The
muon hits have been fitted to a cubic model taking into accountmultiple scattering and energy loss.
High angle scatters have been removed by a localχ2 criteria. The charge misidentification rate
is of the order of 10−6 for 5 GeV/c muons and close to 10−4 for 2 GeV/c muons. The distance
between measurement planes seems to be the crucial parameter to be optimised. This analysis has
however two main limitations: i) the average magnetic field is independent of the distance between
measurement planes, which is unrealistic below some distance (∼ 5cm) since the magnetic field is
only present in the iron; ii) all interactions were generated in the center of the detector such that
there were no border effects.

In principle all high angle scatters can be removed by requiring the local and globalχ2 of the
track fit to be within certain limits. In this case the charge misidentification rate can be computed
using simple equations that assume Gaussian multiple scattering and no border effects. Figure17
shows the charge misidentification rate for muons of 1, 1.5 and 2 GeV/c and different detector
configurations. For the default magnetic field (1.25 Tesla iniron, corresponding to 1 Tesla average),
any iron plate thickness between 1 and 5 cm seems to work, being this parameter more important at
lower momenta. The crucial parameter is the magnetic field. At 1GeV/c the default performance
is 0.3%. An order of magnitud less is obtained when the field in ironis increased from 1.25 to
1.7 Tesla and another order of magnitude for 2 Tesla.
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Figure 17. Charge misidentification rate for different detector configurations and for different muon mo-
menta: 1 GeV/c (solid line), 1.5 GeV/c (dashed line) and 2 GeV/c (dotted line), assuming a Gaussian
multiple scattering.t is the thickness of the iron plates (4 cm for the default setup) andε the transverse
resolution.

Signal and background efficiencies for very smallθ13. As it was shown in ref. [48], muons
from the decay of hadrons (mainly charmed particles) inνµ CC interactions constitute the leading
background at high neutrino energies. Fortunately, “real”wrong-sign muons ( from oscillatedνe ’s)
will be in general more energetic and more isolated from the hadronic jet. Thus, this background
can be controlled to a reasonable level by a a combined cut in the momentum of the muon (Pµ) and
its isolation with respect to the hadronic jet, which is represented by the variableQt = Pµ sin2θµh,
whereθµh is the angle between the muon and the hadronic shower. Figure18 shows the fractional
bakgrounds inνµ CC events as a function of the cuts in bothPµ andQt . The optimal cuts depend
on the baseline since signal and backgroud evolve differently with the distance (see ref. [48]). For
a baseline of 3500 km the optimal cuts arePµ > 5 GeV/c andQt >0.7 GeV/c (from ref. [49], Pµ >

7.5 GeV/c andQt >1 GeV/c were used in [48]), which give a total background rate of 8×10−6

for an efficiency of 45%.

Improving the signal efficiency at low neutrino energy . The analysis presented in refs. [48,
49] and described above was optimised for the measurement of very small θ13. Values of the
mixing angle below 0.2o (corresponding tosin2(2θ13) < 5·10−5) were accessible. Being the signal
essentially proportional tosin2(2θ13), a very small background level was required, motivating the
strong cut on the muon momentum. However, this cut led to essentially no efficiency below 10 GeV
neutrino energy. This is not a problem for the measurement ofθ13, since this parameter enters in the
oscillation probability as a normalization factor, which can be obtained at much higher energies,
where the neutrino flux and cross section are larger. However, the detection of low energy neutrinos
is crucial for the simultaneous measurement ofθ13 andδCP. Indeed, the measurement ofδCP is
based on the experimental capabilities to distinguish the oscillation pattern of neutrinos from that
of anti-neutrinos [48]. This CP asymmetry is maximum for neutrino energies in the region of the
oscillation peak (∼ 7 GeV at 3500 km) and below. Refer to the Physics Report [3] for more details.

Taking advantage of the correlation between the momentum ofthe muon and the total visible
energy, the cuts can be optimised for bothθ13 andδCP. Figure19shows thePµ (top panels) andQt

(bottom panels) distributions as a function ofEvis for signal (left panels) andνµ CC background
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Figure 18. Fractional backgrounds from hadron decays as a function ofthe cuts inPµ andQt for νµ CC and
(νµ +νe ) NC interactions (for storedµ+’s). The charge misidentification rate is also shown on the left for a
conservative configuration: d=15 cm,ν=2% andε=0.5 cm.

Table 2. The list of the relevant cuts used in the analysis. Kinematical cuts are only applied forEvis >

7 GeV/c.

Fiducial Quality Muon id Kinematical
z< 1700 cm 5o < θrec < 90o ∆L > 75,150,200 cm Qt >0.2 GeV/c

|x|, |y| < 600 cm Pµ > (0.2/c) ·Evis

(right panels) events. This figure also shows the variable cuts: Pµ > (0.2/c) ·Evis andQt > 0.2
GeV/c for Evis > 7 GeV and no cuts below this energy. The resulting efficiency for the signal and
the hadronic backgrounds is shown in figure20.

Experience from MINOS and Monolith. The hadronic energy resolution obtained experimen-
taly by MINOS [53], δEh/Eh = 0.55/

√
Eh, whereEh is in GeV, is significantly better than the one

quoted in the proposal and mentioned above. This should improve the currentEν resolution, as
shown in figure21.

The MINOS experiment has also demonstrated thatνµ +νµ CC identification (based mainly
on muon identification) can be performed with high efficiencyand purity down to 1 GeV neutrino
energy [58], as shown in figure22. The MINOS analysis uses a full simulation, with QE and RES
interactions, and a full reconstruction, in which the effect of the pattern recognition is included.
The event classification parameter shown in figure22(right panel) combines information from track
length and pulse height in each measurement plane. For neutrinos above 1 GeV the signal efficiency
is better than 70% while the purity approaches 98% above 2 GeV. The main problem at such low
neutrino energies would be the identification of the muon charge.
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Figure 19. Pµ (top panels) andQt (bottom panels) distributions as a function ofEvis for signal (left panels)
andνµ CC background (right panels) events. The kinematical cuts are also shown.

Figure23 shows the magnetic field strength in the MINOS detector and the extrapolation to a
bigger toroid of 10 m radius. A 7 m radius toroid, as the one proposed here, seems feasible.

The hadronic angular resolution (δθh) used in the current analysis was obtained by the Mono-
lith group in a test beam [54]. For a spacing between measurement planes of 7 cm they found
δθh = 10.4◦/

√
Eh + 10.1◦/Eh, which is significantly better than the resolution quoted inthe MI-

NOS proposal for a spacing of 4.4 cm,δθh = 16.67◦/
√

Eh +12.15◦/Eh. This affects theQt reso-
lution, which was important for the analyses presented in Refs [47–49], since theQt cut was in the
tail of the distribution, but it is not an issue when the cut isrelaxed, as it is the case in the current
analysis.

Discussion. Although a detailed study with a full simulation is still missing, the muon charge
misidentification seems to be the leading background at low neutrino energies (below 10 GeV).
The charge misidentification rate depends primarily on the magnitude of the magnetic field (the
curvature resolution is inversely proportional to the magnetic field), which must be as high as pos-
sible. A minimum average magnetic field of 1 Tesla should be considered. The MINOS experience
suggests that fields of the order of 1.5 Tesla could be achieved. As discussed previously, a small

– 32 –



2
0
0
9
 
J
I
N
S
T
 
4
 
T
0
5
0
0
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

reconstructed neutrino energy (GeV)

sig
na

l e
ffic

ien
cy

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 5 10 15 20 25 30 35 40 45 50
reconstructed neutrino energy (GeV)

CC
 ch

ar
m

 e
ffic

ien
cy

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 5 10 15 20 25 30 35 40 45 50
reconstructed neutrino energy (GeV)

CC
 n

o-
ch

ar
m

 e
ffic

ien
cy

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 5 10 15 20 25 30 35 40 45 50
reconstructed neutrino energy (GeV)

NC
 e

ffic
ien

cy

Figure 20. Signal and hadronic background efficiencies as a function of the reconstructed neutrino energy
for different cuts on the muon length: 75 cm (black boxes), 150 cm (empty circles) and 200 cm (stars).
top-left: νµ CC; this plot also shows the signal efficiency obtained in previous analyses:Pµ >5 GeV/c and
Qt >0.7 GeV/c from ref. [49] (solid line) andPµ >7.5 GeVc andQt >1 GeV/c from ref. [48] (dashed line).
Top-right panel:νµ CC with charm decays. Bottom-left panel:νµ CC other than charm decays (mainly
pion and kaon decay). Bottom-right panel:νµ NC. 5×106 events have been used both forνµ CC and NC
interactions. The bin size has been chosen taking into account theEν resolution (∼ 2δEν ).

change in the field of 20% reduces the charge misidentification background by one order of mag-
nitude. Thus, the magnetic field issue should be studied verycarefully.

One of the main issues in the MIND analysis is how well the signal efficiency can be deter-
mined at low neutrino energies. Given the high derivative ofthe efficiency curve below 10 GeV
(see figure20), the accuracy on the efficiency measurement would be highlyaffected by the reso-
lution on the neutrino energy. As discussed above, the resolution assumed in this analysis is worst
than the one obtained by MINOS (see figures15 and21).

The current simulation does not consider quasi-elastic (QE) interactions and resonance pro-
duction (RES), which should dominate below 2 GeV neutrino energy. QE interactions would have
a possitive impact on theEν resolution since the neutrino energy can be directly computed from the
muon momentum and angle. For these events theEν resolution would approach thePµ resolution
by range, which is of the order of 4% at these energies. The average resolution can be computed us-
ing the DIS and QE cross sections and the correspondingEν resolutions. This is shown in figure21.
Another possibility is to use only QE events, below a certainenergy.

In the current analysis the impact of a realistic pattern recognition has been ommited. The cut

– 33 –



2
0
0
9
 
J
I
N
S
T
 
4
 
T
0
5
0
0
1

true neutrino energy (GeV)

ne
ut

rin
o 

en
er

gy
 re

so
lut

ion
 (G

eV
)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

Figure 21. Neutrino energy resolution as a function of the true neutrino energy (solid line). The dashed
line corresponds to contribution of the muon momentum measurement, while the dotted line is the hadronic
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Figure 22. On the left panelνµ CC selection efficiency and purity as a function of the reconstructed neutrino
energy (Evis) obtained for MC data. On the right panel comparison of the event classification parameter
(likelihood function) for real data and MC.

in the muon length ensures that a sufficient number of muon hits are isolated from the hadronic
shower. This is a reasonable approximation at high neutrinoenergies, since the primary muon
generally escapes the hadronic shower (true for muons above∼2 GeV/c). Low energy muons,
which are lost in the current analysis, could be recovered with an improved pattern recognition.
The clean topologies of QE and RES events would help in this aspect. Pattern recognition should
not be an issue for these kind of events, although the wrong charge assignments would be frequent
for muons below 1.5 GeVc (∼ 2·10−3 for 1.5 GeV/c muons).

A satisfactory charge measurement is obtained for iron plate thickness in the range 2–5 cm.
Thus, the longitudinal segmentation is mainly driven by thehadronic energy resolution and the
pattern recognition efficiency. The former should improve if the number of samples increases,
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Figure 23. On the left panel, magnetic field as a function of the transverse coordinates in the MINOS far
detector. On the right, extrapolation of the MINOS field to a bigger torus.

although the current MINOS resolution seems to be sufficient. On the other hand, an improved
pattern recognition efficiency at low momentum could be veryimportant since the cut in the muon
length could be relaxed.

Tranverse resolution might be important for the charge measurement at low momentum, for
theQt resolution and for pattern recognition. Anything better than 1 cm would be sufficient for the
charge and theQt measurements. Again, pattern recognition seems to be the main issue.

The νµ +νµ CC identification efficiency obtained by MINOS suggests thatthe signal effi-
ciency in MIND could be much flatter in the energy range from 1 to 10 GeV. This is the result of
using a powerful pattern recognition and event classification algorithms.

An optimised MIND detector could reach the required performance down to neutrino energies
of 1–2 GeV. A sufficient overburden to make any cosmic ray background negligible is necessary.
However, a few questions remain open:

• How well can the efficiency be measured at low neutrino energies?

• What would be the effect of pattern recognition? This is partially answered by MINOS,
although this effect should be included in the MIND reconstruction.

• What is the QE selection efficiency and purity?

• What is the effect of non Gaussian effects in the charge measurement? This is one of the
main issues and should be answered with a prototype.

• What is the maximum magnetic field that can be afforded?

4.1.2 Totally Active Scintillating Detectors

The possibility of using totally active calorimeters in a Neutrino Factory was first considered at
NuFact05 [60]. A first study of the performance of this design was presented at the ISS meeting in
August 2006 [61].

The detector would consist of long scintillator bars with a triangular cross-section arranged in
planes which make x and y measurements in a 0.5 Tesla magneticfield. The scintillator bars con-
sidered have a length of 15 m and the triangular end has a base of 3 cm and a height of 1.5 cm. This
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Figure 24. GEANT4 view of the simulated TASD detector.

design is an extrapolation of the MINERνA experiment [62] to produce a detector with dimensions
15×15×100 m and a mass of approximately 22.5 kton.

This detector was simulated with GEANT4 version 8.1 (see figure 24) and the digitisation
took into account the dE/dx in the scintillator slabs and a light yield extrapolated from MINERνA
tests. The magnetic field was simulated as a uniform 0.5 Teslafield perpendicular to the beam
axis. The performance of the detector was studied by simulating the passage of single muons and
positrons with a momentum ranging from 100 MeV/c to 15 GeV/c. Future studies of this design
will include a more realistic field map based on recent designwork to achieve the large magnetic
volume and the simulation of neutrino interactions.

The simulated hits were digitised with an assumed energy resolution of 2 photo electrons and
the reconstruction of clusters imposed a threshold of 0.5 photo electrons before building space
points and performing a track fit using the Kalman Fitting package RecPack [63].

In order to study the momentum resolution and the rate at which the charge of a muon is
mis-identified, 2.3 million muons were simulated of which 1.8 million, divided equally in two
flat momentum ranges (0.1- 1 GeV/c and 1- 10 GeV/c), were analysed. The position resolution
was found to be approximately 4.5 mm RMS with a central Gaussian with width of 2.5 mm. The
momentum resolution as a function of the muon momentum is shown in figure25(top-left). The
tracker achieves a resolution of better than 10% over the complete momentum range studied.

A first attempt to establish the particle ID performance of the detector is summarised in fig-
ure 25(top-right). This figure shows the reconstructeddE/dx versus the reconstructed momen-
tum for muons (blue/clear) and positrons (red/dark). It canbe seen that above approximately
600 MeV/c it should be possible to separate muons and positrons on the basis of the recon-
structed energy.

Due to the low density of the Totally Active Scintillating Detector (TASD), it is possible to
reconstruct muons down to a few hundred MeV/c. Figure25(bottom-left) shows the efficiency for
reconstructing positive muons as a function of the initial momentum of the muon. The detector
becomes fully efficient above 400 MeV/c.

The charge of the muon was determined by performing two separate Kalman track fits, one
with a positive charge and the other with a negative charge. The charge mis-identification rate was
determined by counting the rate at which the track fit with theincorrect charge resulted in a better
χ2 per degree of freedom than that with the correct charge. Figure 25(bottom-right) shows the
charge mis-identification rate as a function of the initial muon momentum.
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Figure 25. Performance of the Magnetised TASD detector. Top-Left panel: muon momentum resolution as
a function of the muon momentum. Top-Right panel: reconstructeddE/dx as a function of momentum for
muons (blue/clear) and positrons (red/dark). Bottom-Leftpanel: muon identification efficiency as a function
of the muon momentum. Bottom-Right panel: muon charge mis-identification rate as a function of the muon
momentum.

This first investigation of the TASD concept has shown it to beworthy of a more detailed study.
In particular, it has led to interest in the concept of a lowerenergy Neutrino Factory [3] (due to the
lower threshold than the baseline magnetised iron detector) but more work is required in order to
bring the understanding of this device to a comparable levelto the baseline.

4.2 Large Water Cerenkov detectors

Since the pioneering age of the Kamiokande and IMB detectors, and after the success of the Super-
Kamiokande detector (an extension by a factor 20 with respect to previous detectors), the physics
community involved in this area is continuously growing in the three geographical regions, namely
Japan, USA and Europe.

To strengthen the know-how and R&D exchanges, a series of International Workshops have
been set up since 1999, the so-called NNN Workshop standing for “Next Nucleon Decay and Neu-
trino Detectors”. The last meetings were organized at Aussois (France) in 2005, Seattle (USA
2006) and Hamamatsu (Japan 2007). As it is clearly stated in the title of this Workshop, detec-
tion techniques other than Water Cerenkov are also considered, as for instance Liquid Scintillator,
Liquid Argon as well as Iron detectors.
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Figure 26. Sketch of the Hyper-K detector (Japan).

Also, if the pioneering Water Cerenkov detectors were builtto look for Nucleon Decay, a
prediction of Grand Unified Theories, Neutrino physics has been the bread and butter since the
beginning. Just to remind the glorious past: first detectionof a Super Novae neutrino burst, Solar
and Atmospheric anomaly discoveries that were explained asmass and mixing of neutrinos, the
latter being confirmed by the first long base line neutrino beams and by reactor experiments.

Nucleon decay and neutrino physics are closely linked theoretically (ie. most if not all of
the GUT theories predict nucleons to decay and neutrinos to have non zero masses and mix-
ings). Hence, these are areas of equally strong interest to motivate the R&D program extension
of the next generation Water Cerenkov mass to the megaton scale (about a factor 20 more than
SuperKamiokande). One should keep in mind that, in additionto the physics addressed by the ISS,
the physics potential of such a detector includes: nucleon decay, supernovae neutrinos from bursts,
relic neutrinos, solar and atmospheric neutrinos, long baseline low energy neutrinos (beta beam,
super beam and combined with atmospheric neutrinos) and other astrophysical topics.

The physics performance [3], scalability and robustness of Water Cerenkov detectors are well
established and the R&D efforts are concentrated now in two engineering aspects: the excavation
of large cavities and the cost reduction of the photodetectors. The addition of Gadolinium salt, once
it is demonstrated that it can be safely used in a 1 kton prototype and also in SuperKamiokande,
could be a decisive ingredient for the new detectors, especially for neutrinos from Supernovae.

4.2.1 The present detector design

Up to now the three geographical regions have proposed threedetector designs with a fiducial mass
around 500 kton. Some characteristics are presented in table 3.

The Japanese design (figure26) is based on two twin tunnels with 5 optically independent
cylindrical compartments, each 43 m in diameter and 50 m long, each covered by about 20,000
photodetectors to realize a 40% surface coverage. The US design (figure27) is composed of 3 cubic
optically independent compartments (60×60×60 m3). The inner detector regions are viewed by
about 57,000 20” PMTs, with a photocathode coverage of 40% for the central compartment and
10% for the two side compartments. An outer detector serves as a veto shield of 2.5 m depth and
is instrumented with about 15,000 outward-facing 8” PMTs. The European design (figure28) is
based on up to 5 shafts (3 are enough for 500 kton fiducial mass), each 65 m in diameter and 65 m
height for the total water container dimensions. The PMT surface defined as 2 m inside the water
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Figure 27. Sketch of the UNO detector (USA).

Figure 28. Sketch of the MEMPHYS detector under the Fréjus mountain (Europe).

container is covered by about 81,000 12” PMTs to reach a 30% surface coverage equivalent to a
40% coverage with 20” PMTs (see section4.2.3). The fiducial volume is defined by an additional
conservative guard of 2 m. The outer volume between the PMT surface and the water vessel is
instrumented with 8” PMTs.

4.2.2 Large underground cavities

All the detector projects are located in underground laboratories. The water equivalent depth of the
different detectors sites are:≈ 1500 m.w.e for the Tochibora mine in Japan, and around 4200 m.w.e
for the Homestake mine, chosen as the Deep Underground (DUSEL) facility by the NSF in the
USA, and≈ 4800 m.w.e for the Fréjus road tunnel in Europe. A deeper site, with a smaller cosmic
ray induced background, is especially important in the caseof relic supernovae and solar neutrinos,
but in case of nucleon decay the detector segmentation may help to reduce background. For long
baseline neutrinos, the duty cycle of the accelerator helpsto discriminate the signal from atmo-
spheric neutrinos but studies carried out in the case of a beta beam tend to show that the Fréjus site
is at the right depth and that if it were shallower, then cosmic ray backgrounds would be a problem.

The main difficulty is the non existence yet of large man-madecavities (see table3) at the
depth envisaged. But on an other hand, there are no a priory indications that one could not built
such large cavities and engineering studies are undertakenin the three geographical regions. In
Japan, a preliminary survey of the candidate place for Hyper-K is already done, and the rock
properties at the Tochibora mine have been checked. The cavity model has been analyzed in a real
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environment. The egg transversal shape and the twin tunnel scenario is envisaged as baseline for
Hyper-K. In the US, various engineering models have been used by different consultants. It turns
out that, with the present knowledge, the UNO cavity seems feasible, although more refined work,
with experimental inputs from rock quality measurements and geological fault knowledge in situ is
needed to go further in the project design. In Europe, a pre-study has been performed by the Italian
and French companies involved in the building of the existing road tunnel. These companies have
taken advantage of the numerous measurements made during the excavation of the present road
tunnel and (relatively small) LSM Laboratory to establish avalid estimation of the rock quality as
input for simulations. The main outcome of this pre-study isthat very large cavities with a “shaft”
shape are feasible, while a “tunnel” shape looks disfavored. The next step that can be undertaken
in an European Founding framework, is to validate the rock quality at the exact detector location
and to finalize the detailed shape of the cavities and access tunnels in close conjunction with the
detector design optimization.

Beyond the cavity shape and excavation scenario optimization, there is the need of an extensive
R&D on water containers (vessels versus multi-liners). This is an important aspect for radioactiv-
ity background suppression and also in detector mechanicaldesign with its associate impacts on
detector cost.

4.2.3 Photodetector R&D

The surface coverage by photodetector is not yet optimized as more feedback is needed from the
analysis from the SuperKamiokande I-II and III phases and from Monte Carlo studies of the fore-
seen detectors. Nevertheless, one may already state that the very low energy neutrino events (Super
Novae neutrinos,8B Solar Neutrinos) as well as the search ofπ0 in Nucleon Decay or theπ0/e
separation inνe appearance experiment, all demand good coverage.

In all the detector design there are at least one order of magnitude more photodetectors than
SuperKamiokande I (or III). The R&D is largely shared among the three regions and in very close
contact with the two manufacturers, namely Hamamatsu in Japan and Photonis in Europe and USA
(since July 05, Photonis has acquired the DEP and Burle companies).

The research axis on large HPDs in Japan has been mainly driven by the need to get a lower
price for a new photodetector than the presently available Hamamatsu 20” PMTs, especially to get
rid of the dynode amplifier system which is introduced manually in such a tube. Their measured
characteristics are encouraging: single photo-electron sensitivity, wide dynamic range limited only
by the readout, good timing and good uniformity over the large photo-cathode. But these HPD
need to be operated at 20kV High Voltage and a low noise fast electronics. So, the cost per channel
is a real challenge.

In Europe, Photonis is very competitive on 12” PMTs and arguethat the main parameter to op-
timize is thecost/(cm2×QE×CE), including electronics. Some French laboratories are involved
with Photonis in a joint R&D programme concerning the characteristics of the 12” measurements
and improvements and also concerning the integrated electronics front-end. The main idea is to
adopt smart-photodetectors which provide directly digitized data. The front-end requirements are:
a high speed discriminator for autotrigger on single photo-electron, a coincidence logic to reduce
dark current counting rate (to be defined by MC studies), a digitization of charge over 12 bits with a
dynamical range up to 200 p.e, a digitization of time of arrival over 12 bits to provide nano-second
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accuracy, and a variable gain to equalize photomultiplier response and operate with a common high
voltage (cost reduction). This electronics R&D takes advantage of the R&D from previous years
and concrete realizations for OPERA, LHCb and WSi calorimeter for ILC among others.

Another R&D line which is pursued at CERN in collaboration with Photonis is on the so-
called X-HPD, an almost spherical phototube with a cylindrical crystal scintillator anode mounted
in the centre of the sphere and read out by a small conventional PMT (1”). The concept which is a
modern implementation of Philips’ SMART tube and the QUASARtube (Lake Baikal experiment),
has been demonstrated with a 208 mm prototype tube [64, 65] and promises excellent performance
in terms of viewing angle (≈ 3π), quantum efficiency (≥ 40% peak), collection efficiency and
timing. The radial field geometry makes the X-HPD immune to the earth magnetic field. The X-
HPD is operated around 20 kV. Due to the pre-gain of the scintillator stage of about 30–40, gains
in excess of 107 are easily reached. A design for a 15” tube exists.

4.3 Liquid Argon TPCs

The liquid Argon Time Projection Chamber (LArTPC) [66, 67] is a powerful detector for uniform
and high accuracy imaging of massive active volumes. It is based on the fact that in highly pure
Argon, ionization tracks can be drifted over distances of the order of meters. Imaging is provided
by position-segmented electrodes at the end of the drift path, continuously recording the signals
induced. The absolute timing of the event is given by the prompt scintillation light, providing the
T0 reference signal for the TPC. Such a device allows real-timeimaging of events with bubble
chamber quality, with a longitudinal granularity of the order of a percent of a radiation length. An
example of a simulated neutral-current event in a LArTPC detector can be seen in figure30.

The use of the LArTPC in high energy physics was pioneered by the ICARUS collabora-
tion [69–71]. The successful operation of the ICARUS T600 half-module (∼300 tons) demon-
strated the feasibility of the technique on this mass scale [68]. Building very large mass LArTPCs
necessary for long-baseline neutrino physics will requirenew techniques.

Two different R&D efforts are described in the next two sections. The GLACIER project
investigates a scalable concept based on an industrial Liquified Natural Gas (LNG) tank to build
very large LArTPCs with masses up to 100 kton. It includes feasibility studies to magnetize a
LArTPC of a few 10 kton, allowing for charge discrimination —a necessary requirement at a
Neutrino Factory. The North American LArTPC effort, again based on the industrial LNG tank
concept, is towards the design of an unmagnetized detector for use in experiments involving a
“standard” neutrino super-beam.

4.3.1 The GLACIER project

A very large LArTPC with a mass ranging from∼ 10 to 100 kton would deliver extraordinary
physics output owing to the excellent event reconstructioncapabilities. Coupled to future Super
Beams [72, 73], Beta Beams or Neutrino Factories it could greatly improveour understanding of
the mixing matrix in the lepton sector with the goal of measuring the CP-phase. At the same time,
it would allow to conduct astroparticle experiments of unprecedented sensitivity [74]. Preliminary
simulations show that a “shallow depth” operation at about 200 m rock overburden would not
significantly affect the physics performance, including the astrophysical observations [75].
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Figure 29. Tanker for a 100 kton LArTPC based on industrial LNG technology.

The possibility to complement the features of the LArTPC with those provided by a magnetic
field would open new possibilities [76, 77]: charge discrimination, momentum measurement of
particles escaping the detector (e.g. high energy muons), and precise kinematics. The magnetic
field is required in the context of the Neutrino Factory [76]: (1) a low field,e.g. B=0.1 T, for the
measurement of the muon charge (CP-violation); (2) a strongfield, e.g. B=1 T for the measurement
of the muon/electron charges (T-violation).

A concept for a LArTPC, scalable up to 100 kton (see Fig29), has been proposed [78]. It
relies on (a) industrial tanks developed by the petrochemical industry (no R&D required, readily
available, safe) and their extrapolation to underground orshallow depth LAr storage, (b) novel
readout method for very long drift paths with e.g. LEM readout, (c) new solutions for very high
drift voltage, (d) a modularity at the level of 100 kton (limited by cavern size) and (e) the possibility
to embed the LAr in a magnetic field.

Such a scalable, single LAr tank design is the most attractive solution from the point of view
of physics, detector construction, operation and cryogenics, and finally cost. The first experimental
prototype of a magnetized LArTPC has been operated [79, 80]. These encouraging results allow
to envision a large detector with magnetic field [81]. Beyond the basic proof of principle, the main
challenge to be addressed is the possibility to magnetize a very large mass of Argon, in a range of
10 kton or more. The most practical design is that of a vertically standing solenoidal coil producing
vertical field lines, parallel to the drift direction, by immersing a superconducting solenoid directly
into the LAr tank.

A rich R&D program is underway with the aim of optimizing the design of future large mass
LArTPC detectors [82] and is briefly summarized below.

The development of suitable charge extraction, amplification and collection devices is a crucial
issue and related R&D is in progress. A LEM-readout is being considered and has been shown
to yield gains up to 10000 with a double stage LEM in gaseous Arat cryogenic temperature.
Experimental tests are presently ongoing on charge extraction from the LAr phase, coupled with a
LEM-based amplification and collection in gaseous argon.
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Parameters UNO (USA) HyperK (Japan) MEMPHYS (Europe)

Underground laboratory
location Henderson / Homestake Tochibora Fréjus

depth (m.e.w±5%) 4500/4800 1500 4800
Long Base Line (km) 1480÷2760 / 1280÷2530 290 130

FermiLab÷BNL JAERI CERN

Detector dimensions
type 3 cubic compartments 2 twin tunnels 3÷5 shafts

5 compartments
dimensions 3× (60×60×60)m3 2×5× (φ = 43m×L = 50m) (3÷5)× (φ = 65m×H = 65m)

fiducial mass (kton) 440 550 440÷730

Photodetectors†

type 20” PMT 20” H(A)PD 12” PMT
number 38,000 (central) & 2×9500 (sides) 20,000 per compartment 81,000 per shaft

surface coverage 40% (central) & 10% (sides) 40% 30%

Cost & Schedule
estimated cost 500M$ 500 Oku Yen?∗ 161Me per shaft (50% cavity)

+ 100Me-infrastructure
tentative schedule ∼ 10 yrs construction ∼ 10 yrs construction t∗∗0 +8 yrs cavities digging

t0 +9 yrs PMTs production
t0 +10 yrs detectors installation
Start of Non Accelerator Prog.
as soon as a shaft is commissioned

Table 3. Some basic parameters of the three Water Cerenkov detectorbaseline designs.†: Only inner detector photodetectors are mentioned in this table.
*:Target cost, no realistic estimate yet.**: Thet0 date envisaged is 2010.
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The understanding of charge collection under high pressurefor events occurring at the bottom
of the large cryogenic tank is also being addressed. For thispurpose, a small chamber will be
pressurized to 3–4 bar to simulate the hydrostatic pressureat the bottom of a future 100 kton tank,
to check the drift properties of electrons.

Another important subject is the problem of delivering veryhigh voltage to the inner detectors
trying to avoid the use of (delicate) HV feedthroughs. A series of device prototypes were realized
based on the Greinacher or Cockroft-Walton circuit allowing the feeding into the vessel of a rela-
tively low voltage and operation of the required amplification directly inside the cryogenic liquid.
Tests reaching 120 kV in cold have been successfully performed.

The realization of a 5 m long detector column will allow to experimentally prove the feasibility
of detectors with long drift path and will represent a very important milestone. The vessel for this
detector has been designed by a collaboration of the University of Bern, ETH Zurich and University
of Granada and will be mounted in Bern in 2007. The device willbe operated with a reduced
electric field value in order to simulate very long drift distances of up to 20 m. Charge readout will
be studied in detail together with the adoption of possible novel technological solutions. A high
voltage system based on the previously described Greinacher approach will be implemented.

For the immersed magnetic coil solenoid, the use of high-temperature superconductors (HTS)
at the LAr temperature would be an attractive solution, but is at the moment hardly technically
achievable with the 1st generation of HTS ribbons. We have started a R&D program to investigate
the conceptual feasibility of this idea [83] with BSCCO HTS wires from American Supercon-
ductor [84] and are now investigating the performance of second generation YBCO wires from
American Superconductors and from SuperPower, Inc. [85].

Technodyne International Limited, UK [86], which has unique expertise in the design of LNG
tanks, has produced a feasibility study in order to understand and clarify all the issues related to the
operation of a large underground LAr detector. The study ledto a first engineering design, address-
ing the mechanical structure, temperature homogeneity andheat losses, LAr process, safety, and
preliminary cost estimate. Concerning the provision of LAr, a dedicated, likely not underground
but nearby, air-liquefaction plant was foreseen.

The further development of the industrial design of a large volume tank able to operate un-
derground should be pursued. The study initiated with Technodyne should be considered as a first
“feasibility” step meant to select the main issues that willneed to be further understood and to
promptly identify possible “show-stoppers”. This work should proceed by more elaborate and de-
tailed industrial design of the large underground (deep or shallow depth) tank also including the
details of the detector instrumentation. Finally, the study of logistics, infrastructure and safety
issues related to underground sites should also progress, possibly in view of the two typical geo-
graphical configurations: a tunnel-access underground laboratory and a vertical mine-type-access
underground laboratory.

In parallel, a program to study the technical feasibility ofa large scale purification system
needed for the optimal operation of the TPC is being planned in collaboration with the cryogenic
department at Southampton University (UK) and the Institutfür Luft und Kältetechnik (ILK, Dres-
den, Germany).

The strategy to eventually reach the 100 kton scale foreseesan R&D program leading to the
detailed design study for a tentative 100 kton non-magnetized and 25 kton magnetized detector,
including cost estimates. A 1 kton engineering module couldbe foreseen to investigate the tank
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Figure 30. A simulated neutral current event with a 1 GeVπ0 (νµ +n→ νµ +π+ +π−+π0+n). Sampling
rate is every 3.5% of a radiation length in all three views.

concept, large scale purification, shallow depth operation, etc. A 10 kton detector would have
complementary physics reach to the Superkamiokande detector currently in operation.

In addition to a successful completion of the technologicalR&D, in the medium term a mea-
surement campaign on charged particle beams is envisaged with the goal to demonstratee±/π0

separation. Also a 100 ton LArTPC is being considered for theT2K 2km site, which will provide
a high statistics sample of neutrino interactions.

4.3.2 Off-axis NuMI or Wide-band Superbeam Detector

The purpose of future long-baseline neutrino experiments is to observeνµ → νe transitions. While
this doesn’t give a direct measurement of sin(2θ13) or the mass hierarchy, a combination of results
from experiments with different baselines and results fromreactor neutrino experiments could al-
low for the extraction of the neutrino parameters. In the United States there is the NuMI facility [87]
at Fermilab which provides aνµ beam for the MINOS experiment located 732 km away in a mine
in the state of Minnesota. The beam has been operating since January 2004.

The ultimate background to aνe appearance experiment is the inherentνe content of theνµ

beam. The other serious background to theνe appearance signal (i.e., electron appearance from
charged-currentνe interactions) isπ0’s produced in neutral-current events. Reducing this puts a
premium on detectors that can differentiate electrons fromphotons. The image of a simulated
neutral-current event with a 1 GeVπ0 (νµ + n→ νµ + π+ + π− + π0 + n) in a LArTPC detector,
as simulated by a GEANT3-based Monte Carlo, is shown in figure30. The lower photon shower
is clearly identifiable in LAr based on the displacement fromthe vertex and the high pulse height
at the shower start. The efficiency for detectingνes in a LArTPC is∼80–90% with a negligible
neutral-currentπ0 event background.

A group of physicists from some North American universitiesand Fermilab have collaborated
over the past several years in an effort to design a large (15 to 50 kton) LArTPC as the detector
for a long-baselineνµ → νe appearance experiment [88]. In the baseline 15 kton detector, the LAr
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Figure 31. Proposed R&D programme towards realization of a large LArTPC.

argon is stored in a large, cylindrical, industrial Liquified Natural Gas (LNG) tank. The tank is 29.1
m in diameter and 25.6 m high. The design employs 8 distinct drift regions with 3 metres between
cathode planes and signal wires. The drift field is 500 V/cm giving a drift velocity of 1.5 m/ms and
a maximum drift time of 2 ms. Following ICARUS, each signal “plane” contains three wire planes
— a vertical collection plane and two induction planes strung at±30◦ to the vertical. The wire
pitch is 5 mm. There are also a number of new ideas, including utilizing wire-wrapped “panels”
instead of wire planes, which are described in ref. [89].

A schematic of the R&D programme that was proposed in the fallof 2005 is shown in fig-
ure31. The programme included:

1. A series of technical test setups directed to answering specific questions pertaining to a mas-
sive LArTPC (e.g., long drift, argon purity, wire tensioning, etc.). A number of these have
been accomplished, as described in ref. [89].

2. The construction of a 30–50 ton fiducial mass (∼100–130 ton total argon mass) detector in
which electron-neutrino interactions can be fully reconstructed and a range of 2 GeV neutrino
interactions studied. This detector will operate where it can obtain a sizeable number of
neutrino interactions from the Fermilab NuMI and/or Booster Neutrino beams. This is still
in the proposal stage.

3. The construction and partial outfitting of a commercial tank of ∼1 kton capacity using the
same techniques as proposed for the 15–50 kton tank. This will serve as the test-bed to
understand the issues of industrial construction.

In conclusion, there is a vigorous programme under way in North America towards the design
and testing of a large liquid argon TPC for use in long-baseline neutrino physics. Specifically, the
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LArTPC is the ideal detector for aνe appearance experiment as it is very efficient for reconstructing
νe events while allowing for almost complete rejection of the neutral current background.

4.4 Emulsion cloud chambers

4.4.1 Introduction

An ideal detector for a Neutrino Factory should be able to exploit all the oscillation channels that are
available with the well defined neutrino flux composition:νe → νµ (the so-calledgolden channel),
νe → ντ (the so-calledsilver channel), ν̄µ → ν̄e (the so-calledplatinum channel) and ν̄µ → ν̄τ

when aµ+ circulates into the decay ring and their CP conjugates in thecase of aµ− circulating.
Therefore, an ideal detector should perform a complete and accurate kinematical reconstruction of
neutrino events and be able to:

• measure the momentum and the charge of the leptons (muons andelectrons);

• identify the decay topologies of theτ leptons.

So far, the previous tasks have been separately tackled by using different techniques. A mag-
netized iron calorimeter is being optimized for the study ofthe golden channel requiring the muon
detection and the charge determination with a high efficiency and a small pion to muon misidenti-
fication probability (section4.1.1). The task of identifying electrons and of measuring their charge
is very tough and so far only a study based on a magnetized liquid argon detector has been pre-
sented (section4.3.1), although totally active scintillating detectors are potentially able to do it
(section4.1.2).

A detector `a la OPERA [91, 92], based on the Emulsion Cloud Chamber (ECC) technique [93,
94], has been proposed to search for the silver channel throughthe direct detection of theτ muonic
decay thanks to the micrometric space resolution of the nuclear emulsions [95, 96].

Here, the idea of using an ECC detector placed in a magnetic field (Magnetized ECC, MECC)
is discussed. This combination provides good charge reconstruction and momentum determination
capabilities, while providing at the same time the micrometric space resolution and compactness
of an ECC. Such a detector has, in principle, the ambitious aim to fulfill all the requirements for an
ideal detector for a Neutrino Factory.

4.4.2 The emulsion cloud chamber

The ECC consists of a sequence of passive material plates interspersed with emulsion films. It
combines the high-precision tracking capabilities of nuclear emulsions with the large mass achiev-
able by employing passive material as a target. By assembling a large quantity of ECC modules,
it is possible to realize aO(kton) fine-grained vertex detector for the direct observation of the
τ ’s produced inντ charged current interactions. This concept has been adopted by the OPERA
Collaboration for a long-baseline search ofνµ → ντ oscillations in the CNGS beam [17].

The basic element of the OPERA ECC is acell made of a 1 mm thick lead plate followed by
an emulsion film, which consists of 44µm thick emulsion layers on either side of a 205µm plastic
base [97]. The number (15-20) of grains of metallic silver produced after the chemical development
in each emulsion layer ensures redundancy in the measurement of particle trajectories and allows
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Figure 32. Schematic view of a Magnetized Emulsion Cloud Chamber.

the measurement of their energy loss that, in the non-relativistic regime, can help to distinguish
different particle masses.

Thanks to the dense ECC structure and to the high granularityprovided by the nuclear emul-
sions, the detector is also suited for electron andγ detection, with an efficient electron/pion sepa-
ration [98]. The energy resolution for an electromagnetic shower is about 20%. By measuring the
number of grains associated to each track a two-track resolution of∼ 1 µm or even better [99] can
be achieved. Therefore, it is possible to disentangle single-electron tracks from electron pairs com-
ing from γ conversion in lead. The outstanding space resolution can also be used to measure the
angle between subsequent track segments with an accuracy ofabout 1 mrad [100]. This allows the
use of Coulomb scattering to evaluate the particle momentumwith a resolution of about 20% [101]
and to reconstruct the kinematical event variables [102].

A lead-emulsion detector has been proposed [95, 96] to study the silver channelνe → ντ at
a Neutrino Factory, with a detector similar to OPERA but witha total mass of 4 kton. The main
limitation factor of this detector is the possibility of measuring the charge only for muons, by an
external magnetic spectrometer. The fraction of theτ decays which can be exploited is thus given
by the muonic decay branching ratio, about 20%.

4.4.3 The magnetized emulsion cloud chamber

The MECC here envisaged has the modular structure shown in figure32. The upstream part (target)
is a sandwich of passive plates and nuclear emulsions. The length of the target section in terms of
radiation lengths must be such to prevent the majority of theelectrons to shower before their charge
has been measured by the downstream modules. More work has tobe done for the optimization of
the passive material. Here the stainless steel is presentedas a possible choice.

An emulsion spectrometeris located downstream of the target. It consists of a sandwich of
nuclear emulsions and a very light material calledspacer, providing gaps in between emulsion
films. The function of the spacer is to provide a lever arm between two consecutive emulsions
films (tracking devices) with a stable mechanical structure. A few centimeter thick Rohacell plate
fulfills this requirement. The trajectory measured with theemulsion films which precede and follow
the spacer provides the measurement of the charge and momentum of the particle. The target and
the spectrometer could mechanically form a singlebrick of about 10 cm length.
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Figure 33. Muon momentum resolution as a function of the momentum for different spacer thicknesses
and different values of the magnetic field: B=0.25 T, B=0.5 T and B=1.0 T for the upper, middle and lower
curves, respectively.

Downstream of the spectrometer, an electronictarget trackerhas the aim of providing the time
stamp of the events. The time information is mandatory in order to match the emulsion information
with the information from the electronic detectors allowing the identification of charged-current
and neutral-current events. The scanning of the emulsion films should be carried out without any
track prediction.

The most downstream element of the detector is theelectron/pion discriminator. Its aim is
to provide the electron identification, having already measured the charge and momentum of the
primary tracks in the spectrometer sector. A good electron identification with a low pion misidenti-
fication probability could be achieved at the same time either by a conventional electronic detector
or by an emulsion calorimeter (emulsion-lead sandwiches).The choice between the two will be
done according to a cost/effectiveness optimization.

The MECC performance both for minimum ionizing particles (MIP) and electrons has been
studied by considering different parameters: particle energy in the 1 to 10 GeV range, spacer thick-
ness in the 2–5 cm range and three values of the magnetic field (0.25, 0.5 and 1 T). The same
nuclear emulsion films as used by the OPERA experiment were considered. The thickness of the
stainless steel plates has been taken to be 1 mm with a total of35 plates (about 2.5X0). The number
of spacers is four.

Monte Carlo simulations have been performed in order to evaluate the momentum resolution
and the charge identification efficiency. The momentum and the charge of the particles have been
measured with four different methods, for consistency checks: slope measurement, sagitta mea-
surement, parabolic global fit and Kalman filter. In the following only the results obtained with
the Kalman filter are shown. The muon momentum resolution hasbeen studied in the 1–10 GeV
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Figure 34. Muon momentum resolution as a function of the spacer thickness for different momenta (from
1 GeV to 10 GeV) and different values of the magnetic field: B=0.25 T for the upper panel, B=0.5 T for the
middle panel and B=1.0 T for the lower panel.

Figure 35. Muon momentum resolution as a function of the momentum for different spacer thickness and
different values of the magnetic field: B=0.25 T for the upperpanel, B=0.5 T for the middle panel and B=1.0
T for the lower panel.
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Figure 36. Charge misidentification as a function of the momentum for minimum ionizing particles (left
panel) and electrons (right panel), assuming a 3 cm spacer thickness and 0.5 T magnetic field.

range as a function of the detector parameters that have to beoptimized: the spacer thickness and
the magnetic field intensity. The results are shown in figures33, 34, 35. With a spacer thickness
of 3 cm (more would be better but the detector would be too long) and a magnetic field of 0.5 T,
a 30% (10%) momentum resolution at 10 (1) GeV can be achieved.The charge misidentification
rate, shown in figure36(left panel), is better than 1% below 10 GeV.

The electron momentum and charge measurements are stronglyaffected by the showering. It
has been shown that only 30% of the electrons with energy in the range 1 to 10 GeV exit the target
region without showering. For these events the momentum resolution and the charge identification
efficiency, shown in figure36(right panel), are similar to those obtained for muons (leftpanel). It
is worth noting that the electron reconstruction has been performed at the true hit level, i.e. without
taking into account the error in the reconstruction. In thisrespect, it is optimistic. On the other
hand, it does not take into account showering electrons for which a pattern recognition program
could allow the track reconstruction, hence the charge and momentum measurement.

Finally, the previous results have been obtained by considering a single emulsion spectrome-
ter. Better results can be obtained, at least for MIP particles, by combining the information from
consecutive emulsion spectrometers.

Another important issue is related to the number of interactions that can be stored in a brick
preserving the capability of connecting unambiguously theevents occurring in the emulsion target
with the hits recorded by the electronic detectors. It has been shown [103] that by using a tracker
made of 3 cm strips up to 100 events may be stored into a single brick. This is a very conservative
number that ensures the capability of the detector to stay inthe beam for several years.

A first test of an emulsion spectrometer exposed to a pion beamhas been performed in a
KEK-PS T1 pion beam [104]. The setup is shown in figure37. It consisted of 2 spacers of 1.5 cm
thickness sandwiched with 3 emulsion films, for a total length of 3 cm. They were located inside a
1 T permanent magnet. The emulsion spectrometer has been exposed to pion beams with momenta
0.5, 1 and 2 GeV. The beam spots in the emulsions are shown in figure38. The results have been
presented in [105]. The achieved momentum resolution is∆p/p ∼ 0.14, and almost constant in
the studied energy range. This test shows that it is possibleto study the performance of a MECC
in a simple way, given the high modularity of the setup. Notice also that in the measurement
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Figure 37. Schematic view of the MECC exposed at the KEK-PS T1 pion beam.

performed, the alignment among the elements of the spectrometer is much more accurate than in
the complete MECC structure (a few microns with respect to about ten microns). Conversely, the
smaller number of spacers (2 with respect to 4 of the proposedMECC) and the thinner spacers
(1.5 cm with respect to 3 cm of the proposed MECC) determine a worsening of the resolution with
respect to the standard emulsion spectrometer.

4.4.4 Conclusion and outlook

The Magnetized Emulsion Cloud Chamber (MECC) should be ableto detectτ decays measuring
the charge of muons, electrons and hadrons. It should also bepossible to study the golden channel
by using an associated electronic detector. Before assessing its physics reach the maximum mass
affordable in terms of scanning power and cost should be quantified. A smaller scale MECC
detector would be suitable as a near detector.

The first tests that have been carried out gave promising results. In order to have a realistic
estimate of the physics reach, in the future the following studies should be performed:

• define, also on the basis of the experience with OPERA, the maximum MECC mass that can
be affordable in terms of scanning power and cost, as well theminimum mass to have good
sensitivity to the silver channel;

• carry out a realistic and cost effective design of the magnet;

• study the synergy with other detectors that could act as the electron/pion discriminator. This
will open the possibility to search for the golden, the silver and the platinum channels with
the same detector;

• once the previous points have been studied, a full simulation with neutrino events has to be
performed in order to evaluate the detector sensitivity forthe golden and the silver channels,
and for the oscillations that produce an electron in the finalstate.
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Figure 38. Spatial distribution in the transverse plane of the beam spots of different energies impinging
onto the emulsion spectrometer in the KEK-PS test.

4.5 Hybrid detectors

All detectors mentioned above use different technologies and are suitable for different kind of
measurements. However a number of interesting synergies can be found.

In the previous section the possibility of merging an emulsion-based detector with other de-
tectors (acting as pion/electron discriminator) has been mentioned. As described in section4.1.2,
the TASD detector could efficiently discriminate between electron and muons/pions for momenta
above∼0.5 GeV/c. In addition it could also act as a spectrometer for the measurement of the
lepton momentum and charge. Thus, an ECC-TASD hybrid would be able to measure golden (in
TASD), silver (ECC-TASD) and platinum channels (ECC and TASD). An important issue concern-
ing channels involving muons (golden and silver) is the background from pion to muon decay and
pion/muon mis-identification due to the low density of liquid scintillators.

The combination ECC-MIND would be interesting for the golden and silver channels, but not
for platinum, since pion/electron separation in iron is very poor. The golden channel would be
measured by MIND alone. For platinum, MIND would act as spectrometer for the measurement of
the muon momentum and charge, and also as a muon identifier (byrange), while the target and the
tau vertex detection would be provided by the ECC. It is worthnoting that MIND should be fully
efficient and have very little background in the energy rangeof interest for the silver channel.
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Combinations with LArTPCs could be also considered.

An interesting combination would be the one between MIND andTASD. In this case the
detector would consist of a sandwich between MIND and TASD modules of about 1 m thick each.
MIND would provide most of the target mass, muon identification, and would act as an hadronic
shower container. TASD would allow the measurement of the muon charge for low energy muons
and the detection of electrons.

MIND would help TASD in triggering hadronic showers, avoiding the potential background
from pion to muon decay and pion/muon mis-identification. TASD would help MIND in measuring
the charge of low momentum muons.

The above arguments should be taken with the appropriate care since none of the combinations
mentioned have been bench-marked with simulations yet.

5 Baseline detectors and conclusion

The detector group of the International Scoping Study set out to determine the baseline detector
options for each of the possible neutrino beams and to define aResearch and Development (R&D)
plan necessary to develop those detector options (appendixA). This programme of work will
continue throughout the International Design Study in order to achieve the optimal configuration
for a future neutrino facility.

This study has found that the best possible option for low energy beams that do not require a
magnetic field remains the very large (500 kton) water Cherenkov detector, since it is the cheapest
option using technology that has been shown to work. While a large volume (100 kton) Liquid
Argon detector would provide much better pattern recognition and, perhaps, energy resolution, this
technology needs to continue to carry out intensive R&D to demonstrate that it is a viable option
for the future. At intermediate energies, a Totally Active Scintillation Detector (TASD) would have
a low enough threshold to be able to reconstruct both electron and muon events. Liquid Argon and
water Cherenkov detectors could also be options in this energy range, but implementing a magnetic
field for either of these detectors still remains very challenging. At a high energy neutrino factory,
which would require a magnetic field, the Magnetised Iron Neutrino Detector (MIND) has shown
to be the best option, since it matches the ability to create amagnetic field with proven technology.
How low a threshold can be achieved with MIND is one of the key R&D tasks that needs to be
pursued. The main issue is to reduce the energy threshold to enhance the sensitivity at lower
energies, where a second oscillation maximum might occur orto have electron sensitivity. For this
reason, the TASD is also being considered for high energy applications, if the issue of magnetising
a very large volume can be resolved.

So, in conclusion, the baseline detectors defined by the ISS for each neutrino beam energy can
be found in table4 and are summarised below:

1. Sub-GeV Beta Beam (BB) and Super Beam (SB)A very massive (Megaton) water Cherenkov
(WC) detector is the baseline option. The main R&D necessaryfor this detector option is the
development of an inexpensive photosensor technology and the cost and engineering for the
cavern and infrastructure needed for such a detector.
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Table 4. Baseline detectors for each beam energy range.

Beam energy Beam type Far detector R&D

Sub-GeV BB and SB Megaton WC Photosensors, cavern
and infrastructure

1–5 GeV BB and SB TASD Photosensors and detectors.
or LAr TPC Long drifts and wires, LEMs, etc
or Megaton WC

20–50 GeV Nufact 100 kton MIND (golden) Simulation + physicsstudies
+ 10 kton NM-ECC (silver) Charge at low momenta

2. 1–5 GeV (high energy) Beta Beam (BB) and Super Beam (SB). There are a number of
possibilities in this scenario, and a totally active scintillating detector (TASD) a liquid argon
TPC or a water Cherenkov detector would possibly be able to operate in this regime. The
R&D for these detector options include photosensor technology once more, and the R&D
for liquid argon detectors (including long drifts and wires, Large Electron Multipliers, etc.).

3. 20–50 GeV high energy neutrino factory from muon decay beams. Magnetic detectors
are necessary, so the baseline is a 100 kton magnetized iron neutrino detector (MIND) for
the wrong sign muon final states (golden channel), or the possibility of ∼ 10 kton of a hybrid
neutrino magnetic emulsion cloud chamber (NM-ECC) detector for wrong sign tau detection
(silver channel). A full physics simulation of these detectors is needed to demonstrate the
efficiency as a function of energy and to determine the chargeidentification at low momenta.

Furthermore, there are more exciting possibilities of detectors that go beyond the baseline,
which could achieve improved performance to the physics parameters in question if these detectors
are found to be feasible and affordable. These are summarised in table5. Finally, some beam
instrumentation and near detector options have also been defined for each of the neutrino beams
and energy ranges. These are summarised in table6.

The International Scoping Study (ISS) has laid the foundations to proceed towards a full Inter-
national Design Study (IDS) for future high intensity neutrino facilities. The aim of the community
is to have a full Conceptual Design Report of a future neutrino facility by the year 2012. The detec-
tor options covered in this ISS Detector Report and the R&D programme identified in appendixA
will form a road map towards defining the detectors at future high intensity neutrino facilities that
will be included in the Conceptual Design Report.

A R&D program

The Research and Development (R&D) programme for detectorsat future neutrino facilities will
rely on a number of international initiatives aimed at delivering the optimal technology for each of
the possible neutrino beam options. The aim is to define the R&D needed over the next four years
to be able to carry out a Conceptual Design Study of the combined accelerator- detector system.
The following sub-sections will define the R&D tasks that need to be carried out in each of the
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Table 5. Detectors beyond the baseline for each beam energy range.

Beam energy Beam type Far detector R&D

Sub-GeV BB and SB 100 kton LAr TPC Clarify advantage of
LAr with respect to WC

1–5 GeV BB and SB TASD Photosensors and detectors.
or LAr TPC Long drifts and wires, LEMs, etc
or Megaton WC

20–50 GeV Nufact Platinum detectors Engineering study.
Magnetised TASD Large volume magnet.
Magnetised LAr Simulations, physics. studies
Magnetised ECC

Table 6. Beam instrumentation and Near Detectors for each beam energy range.

Beam energy Beam instrumentation R&D
Near Detectors

Sub-GeV T2K concept Concept simulations, theory.

1–5 GeV Noνa concept Concept simulations, theory.
for precision measurement

20–50 GeV Beam intensity (BCT) Need study.
Beam energy, polarization Need study.
Beam divergence Need study.
Shielding Need concept.
Leptonic detector Simulation and study.
Hadronic detector Simulation, study and vertex detector R&D.

detector systems to carry out the Conceptual Design Study and to be able to perform a critical
comparison of the neutrino facilities as a whole.

A.1 Magnetized Iron Neutrino Detector (MIND) and Totally Ac tive Scintillator Detector
(TASD)

• Design, cost and engineering solutions for the magnet system for an iron calorimeter.

• Design, cost and engineering solutions for the magnet system for a large volume totally
active scintillation detector.

• R&D on magnetic field resistant photon detector technology,which could include testing
of Multi-Pixel Photon Counters (MPPC), Silicon Photo-multiplier tubes (SiPM), Avalanche
Photo Diodes (APD) or other similar technologies.

• Feasibility and cost of long strips of extruded scintillator with optic fibre readout.

• Building proptotype scintillator-fibre detection systemsof varying lengths (5–20 m) and
measurements of the attenuation of the signal as a function of the length of scintillator,
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measurement of the number of photoelectrons collected and studying the optimal geome-
try for the scintillator strips (for example, a comparison of the performance of square versus
triangular cross-section of the scintillator strips).

• Study whether a different detector technology (such as Resistive Plate Chambers, RPC)
would deliver the same performance at a reduced cost.

• Build a prototype to put in a suitable test beam and test its performance inside a mag-
netic field.

A.2 Water Cherenkov detector

The detector R&D on large water Cherenkov devices is based onthe experience of running the
Super-Kamiokande detector. However, for a Megaton scale water Cherenkov device, further R&D
is needed on a variety of topics:

• Engineering and cost of cavern excavation for Megaton waterCherenkov detectors at differ-
ent sites, including the optimal modularity of such a system.

• R&D on photon detectors, such as large area Hybrid Photon Detectors (HPD), or standard
Photo Multiplier tubes, including the reduction of the photon detection cost, reducing the
risk of implosion, electronics readout costs and reductionof energy threshold through the
selection of low activity materials for the detectors and associated mechanics.

• Engineering studies of the mechanics to support the photon detectors.

• Studies of energy resolution of water Cherenkov detectors,especially at low energy (ie
250 MeV).

A.3 Liquid Argon detector

The Liquid Argon R&D programme is well advanced in the USA andEurope. The main R&D
issues include:

• Feasibility and cost of using industrial tankers developedby the petrochemical industry and
their deployment for underground liquid argon storage.

• Demonstration of detector performance for very long drift paths, including liquid argon pu-
rification.

• R&D on detectors for charge readout (for example, with a Large Electron Multiplier, LEM).

• Photon detector readout options (for example, wavelength shifting coated photomultiplier
tubes).

• R&D on ASICs for electronics readout and data acquisition system.

• Development of new solutions for drift in a very high voltage(such as the Cockcroft-Walton
style Greinacher circuit).
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• The possibility to embed the liquid argon in a B-field has beenconceptually proven. How-
ever, the magnetic field strength needs to be determined by physics requirements and the
feasibility and cost of the magnetic field design for large liquid argon volumes needs to be
established. Study of high temperature superconducting coils to operate at liquid argon tem-
peratures is an essential R&D task to demonstrate this feasibility.

• Dedicated test beams to study prototype detectors and to perform tracking and reconstruction
of clean electron andπ0 samples.

A.4 Emulsion Cloud Chamber

There has been a significant amount of R&D done on the use of emulsion for particle physics
experiments, such as CHORUS, Donut and, more recently, OPERA. The main issues associated
with the emulsion cloud chamber that need to be addressed in further R&D are:

• Improvement to the automated scanning stations to reduce the overall scanning time and to
improve the scanning accuracy.

• Further R&D on operating emulsion-iron sandwich systems ina magnetic field and adapting
the scanning algorithms to recognise tracks inside a magnetic field.

A.5 Near detectors

• Silicon vertex detector for the study of the charm background at a neutrino factory: study
a comparison of performance and cost of pixel versus strip detectors. Possible solutions
could include standard hybrid strip or “stripxel” detectors, hybrid pixel detectors, Monolithic
Active Pixels (MAPS) or DEPFET pixel detectors. The latter are currently being studied in
the context of the linear collider, so could provide useful synergy between the two projects.
Study whether layers of passive material (boron carbide, graphite or other low Z material)
are necessary as a neutrino target.

• Tracking device: determine the tracking medium at a near detector. A possibility could be to
use a scintillating fibre tracker that serves both as a targetand a tracking medium. Determine
its performance, feasibility and cost. Are there any other options for the tracker such as drift
chambers or a gas Time Projection Chamber (TPC)?

• Determine the performance needs for the other sub-detectors within the near detector. For
example, what is the required energy resolution for a calorimeter? Is particle identification
necessary in the near detector? An example of a particle identification system could be the
use of a DIRC (Detection of Internally Reflected Cherenkov Light) [106] such as the one
used in Babar. What detector technology should be used for the muon chambers of the near
detector?

• Determine the accuracy of the neutrino flux measurement using the near detector design and
determine whether it meets the specification of 0.1% flux error. Perform a study of the charm
background for the wrong sign muon signal. and measure the effect of aQt cut to reduce the
charm background.
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• Determine the accuracy of cross-section measurements as a function of energy. Above 5 GeV,
where it is dominated by deep-inelastic scattering, the aimis to perform a measurement at the
0.1% level. For less than 5 GeV, determine ways of measuring the different components. The
near detector should be able to go to an energy threshold, at least as low as the far detector.

B Large magnetic volumes

B.1 Introduction

All detector concepts for the Neutrino Factory (NF) requirea magnetic field in order to determine
the sign of muon (or possibly the electron) produced in the neutrino interaction. For the baseline
detector, this is done with magnetized iron. Technically this is very straightforward, although the
100 kT baseline detector does present challenges because ofits size. The cost of this magnetic
solution is felt to be manageable. Magnetic solutions for the other NF detectors become much
more problematic. No serious consideration has been given to magnetizing a MT water Cerenkov
detector, but we have considered magnetizing volumes as large as 60,000m3 for a liquid Argon
detector or a totally-active sampling scintillator detector (TASD). In addition the magnetic emulsion
cloud chamber (MECC) would also require a relatively large magnetic volume. We have considered
the following technologies:

• Room Temperature Coils (Al or Cu)

• Conventional Superconducting Coils

• High Tc Superconducting Coils

• Low Temperature Non-Conventional Superconducting Coils

For the cases of the TASD, the MECC, and the LAr approach currently being studied by a
US-Canadian group providing the required magnetic volume using 10 solenoids of roughly 15m
diameter×15m long has been considered with the solenoids configured into amagnetic cavern as
shown in figure39. We have considered a number of field strengths, but chose thebaseline to be
0.5T. For the LAr concept being developed by the Glacier collaboration, field coils could be wound
inside the large LAr tank. In addition, we have also considered a dipole configuration for a TASD
based on a concept that would use coils similar to those used in the Atlas toroids.

B.2 Conventional room temperature magnets

In order to get adequate field strength with tolerable power dissipation, conventional room-tempe-
rature coils would have to be relatively thick. We first considered Al conductor operating at 150K.
We then determined the amount of conductor necessary to produce a reference field of 0.1T. In
order to keep the current density at approximately 100A/cm2, 10 layers of 1cm2 Al conductor
would be required for our 15 m diameter, 15 m long reference solenoid. Using a $20/kg cost
for conventional magnets [107], the estimated cost for 1 solenoid is $5M. The power dissipation
(assuming R=1× 10−8 Ohm-m) is approximately 1 MW. Ten magnets would then be $50M and
we felt that this number would be acceptable for a large NF detector. However, the operating
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Figure 39. Magnetic cavern configuration.

costs for 10 MW of power would be $13M/year (based on typical US power costs). The cost
of the magnet system including 10 years of operation is thus $180M. If the cost of cooling the
coils to 150K is included, the costs increase substantially. Studies have shown [108] that there is
little cost benefit to operating non-superconducting (Al orCu) coils at low temperature vs. room
temperature. If we consider that the power dissipation at room temperature for Al coils triples (vs.
150K operation), then the operating cost for conventional room temperature magnets of this size
will be unmanageable. Obviously trying to reach our baseline goal of 0.5T with room temperature
magnets is totally unmanageable.

B.3 Conventional superconducting coils

One of the first configurations that we considered used superconducting coils similar to the coils
used in the Atlas toroids to magnetize a roughly 30 kT TASD as shown in figure40. In this
configuration, 10 coils are used along each side of the detector. We estimated that the coil cost
(extrapolated from the Atlas experience) would be on the order of $120M and was considered
acceptable. The field strength for this design was chosen to be 0.15T and at this field a 5 sigma
determination of muon sign could be obtained at a muon momentum of 2 GeV/c. However, we
determined that the field quality in this configuration was not adequate. In addition, the amount of
iron required for the return flux was quite large.

Conventional superconducting solenoids are certainly an option for providing the large mag-
netic volumes that are needed. Indeed coils of the size we areconsidering were engineered (but
never built) for the proposed GEM experiment at the SSC. A cylindrical geometry (solenoid) does
imply that a fraction of the magnetic volume will not be outside the volume of the active detec-
tor which will likely be rectangular in cross section. This is certainly a disadvantage in terms of
efficient use of the magnetic volume, but would provide personnel access paths to detector com-
ponents inside the magnetic cavern. It is certainly possible to consider solenoids of rectangular
cross section and thus make more efficient use of the magneticvolume, but the engineering and
manufacturing implications of this type of design have not been evaluated.

Technically, superconducting magnets of this size could bebuilt, but at what cost? There
have been a number of approaches to estimating the cost of a superconducting magnet and we will
mention two of those there. The first comes from Green and St. Lorant [109]. They looked at all
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Figure 40. Magnetic dipole configuration.

the magnets that had been built at the time of their study (1993) and developed two formulas for
extrapolating the cost of a superconducting magnet: one scaling by stored energy and one scaling
by magnetic volume times field. They are given below:

C = 0.5E0.662
s

and
C = 0.4(BV)0.635,

whereEs is the stored energy in MJ, B is the field in Tesla, V is the volume in m3 and C is the cost
in M$. The formulas given above give a cost for each 15 m diameter, 15 m long, 0.5T magnet of
approximately $20M (based onEs) and $38M (based on magnetic volume). As another reference
point, we used the CMS coil [110] (B=4T, V=340 m3, Stored energy = 2.7 GJ, Cost = $55M).
The Green and St. Lorant formulas give costs for the CMS magnet of $93M and $41M based on
stored energy and magnetic volume respectively. From thesedata we can make “Most Optimistic”
and “Most Pessimistic” extrapolations for our baseline NF solenoid. The most optimistic cost
comes from using the formula based on stored energy and assume that it over-estimates by a factor
of 1.7 (93/55), based on the CMS as built cost. This gives a cost of $14M for each of our NF
detector solenoids. The most pessimistic cost extrapolation comes from using the formula based
on magnetic volume and conclude that it under- estimates thecost by a factor of 1.3 (55/41), based
on the CMS as built cost. This then gives a cost of $60M for eachof our NF detector solenoids.
There is obviously a large uncertainty represented here.

Another extrapolation model was used by Balbekov et. al. [111] based on a model developed
by A. Herve [114]. The extrapolation formulae are given below:

P0 = 0.33S0.8

PE = 0.17E0.7

and
P = P0+PE

whereP0 is the price of the equivalent zero-energy magnet in MCHF,PE is the price of magneti-
zation, and P is the total price. S is the surface area (m2) of the cryostat and E (MJ) is the stored
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energy. This model includes the cost of power supplies, cryogenics and vacuum plant. From the
above equations you can see that the model does take into account the difficulties in dealing with
size separately from magnetic field issues. Balbekov et. al.used three “as- builts” to derive the
coefficients in the above equations:

• ALEPH (R=2.65m, L=7m, B=1.5T, E=138MJ, P=$14M)

• CMS (R-3.2m, L=14.5m, B=4T, E=3GJ, P=$55M)

• GEM (R=9m, L=27m, B=0.8T, E=2GJ, P=$98M)

The GEM magnet cost was an estimate based on a detailed designand engineering analysis.
Using this estimating model we have for one of the NF detectorsolenoids:P0 = 0.33(707)0.8 =

63MCHF, PE = 0.17(265)0.7 = 8.5MCHF. The magnet cost is thus approximately $57M (which
is close to our most pessimistic extrapolation given above). One thing that stands out is that the
magnetization costs are small compared to the total cost. The mechanical costs involved with
dealing with the large vacuum loading forces on the vacuum cryostat assumed to be used for this
magnet are by far the dominant cost.

B.4 High Tc magnets

We did not explore in detail the possibilities of building a NF detector solenoid with high Tc
superconductor, but we recognized the potential in this area. Currently the cost of high Tc super-
conductor is 100–200 times [112] that of conventional SC for the same field and there are many
engineering issues that would have to be investigated first if we are to conclude that this technology
was applicable (cost + manufacturability) to our application. However since the technological sta-
tus of high Tc superconductor is moving so fast, we did do somezeroth-order estimates regarding
one of these NF detector solenoids fabricated with high Tc superconductor. We assumed a low-
temperature operation of 35K. This might still allow for a non-vacuum insulated (foam) cryostat
and thus have no vacuum loading to give higher current carrying capacity. The cost of the super-
conductor for 10 NF detector solenoids was estimated to be $50M. Based on studies that have been
done on foam-insulated vessels for GLACIER, we estimated the cost of the cryostats also at $50M.
Assembly and engineering could not be reliably estimated inthat they will depend on the particu-
lars of the conductor being used and the currently existing manufacturing and assembly capabilities
for high Tc superconducting magnets are not yet at the stage where reliable estimates can be made.
However the possible cost savings afforded by using non-vacuum insulated cryostats are large and
high Tc superconductor cable technology is advancing very rapidly.

B.5 Low temperature non-conventional superconducting coils

In this concept we solve the vacuum loading problem of the cryostat by using the superconducting
transmission line (STL) that was developed for the Very Large Hadron Collider superferric mag-
nets [113]. The solenoid windings now consist of this superconducting cable which is confined
in its own cryostat. Each solenoid consists of 150 turns and requires∼7500 m of cable. There is
no large vacuum vessel in this design. We have performed a simulation of the Magnetic Cavern
concept using STL solenoids and the results are shown in figure 41. With the iron end-walls (1 m
thick), the average field in the XZ plane is approximately 0.58 T at an excitation current of 50 kA.
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Figure 41. STL Solenoid Magnetic Cavern Simulation.

Figure 42. STL Solenoid Magnetic Cavern Field Uniformity in XZ plane.

The maximum radial force is approximately 16 kN/m and the maximum axial force approx-
imately 40 kN/m. The field uniformity is quite good with the iron end- walls and is shown in
figure42.

B.6 Superconducting Transmission Line

The superconducting transmission line (STL) consists of a superconducting cable inside a cryopipe
cooled by supercritical liquid helium at 4.5–6.0 K placed inside a co-axial cryostat. It consists of
a perforated Invar tube, a copper stabilized superconducting cable, an Invar helium pipe, the cold
pipe support system, a thermal shield covered by multilayersuperinsulation, and the vacuum shell.
One of the possible STL designs developed for the VLHC is shown in figure43. Its overall diameter
is approximately 83 mm.

The STL is designed to carry a current of 100 kA at 6.5 K in a magnetic field up to 1 T. This
provides about a 50% current margin with respect to the required current in order to reach a field
of 0.5T. This operating margin can compensate for temperature variations, mechanical or other
perturbations in the system. The superconductor for the STLcould be made in the form of braid
or in the form of a two-layer spiral winding using Rutherfordcable. The braid consists of 288
NbTi SSC-type strands 0.648 mm in diameter and arranged in a pattern of two sets of 24 crossing
bundles with opposite pitch angle about the tube. A conductor made of Rutherford cables consists
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Figure 43. Superconducting transmission line.

of 9 NbTi cables that were used in the SSC dipole inner layer. Acopper braid is placed inside the
superconductor to provide additional current carrying capability during a quench. The conductor
is sandwiched between an inner perforated Invar pipe, whichserves as a liquid helium channel,
and an outer Invar pressure pipe that closes the helium space. Both braided and spiral-wrapped
conductors and the 10 cm long splice between them have been successfully tested with 100 kA
transport current within the R&D program for the VLHC. The STL has a 2.5-cm clear bore, which
is sufficient for the liquid helium flow in a loop up to 10 km in length. This configuration allows
for cooling each solenoid with continuous helium flow comingfrom a helium distribution box.

The thermal shield is made of extruded aluminum pipe segments, which slide over opposite
ends of each support spider. The 6.4-mm diameter Invar pipe is used for 50 K pressurized helium.
It is placed in the cavities at the top and the bottom of both the shield and the supports. The shield
is wrapped with 40 layers of a dimpled super insulation. The vacuum shell is made of extruded
aluminum or stainless steel. Heat load estimates for the described STL are:

• Support system: 53 mW/m at 4.5 K and 670 mW/m at 40 K

• Super insulation: 15 mW/m at 4.5 K and 864 mW/m at 40K

The estimated cost of the described STL is approximately $500/m. Further STL design opti-
mization will be required to adjust the structure to the fabrication and operating conditions of the
desired NF detector solenoids and to optimize its fabrication and operational cost. Although what
has been described here has been directed at the Magnetic Cavern concept, the STL could also be
used in a very large LAr detector following the Glacier concept. The fact that the STL would be
operating in liquid Argon would allow for a simplified STL design since the heat-load environment
would be very different.

B.7 STL solenoid power

The relatively low inductance of the STL solenoids (0.3 H/solenoid) allows powering all solenoids
from a single 50 kA power supply. A power supply with a voltageof ±50 V will allow ramping
the magnet system up or down in less than 1 hour. A single pair of 50 kA current leads is required
for powering the solenoids. These could either be conventional copper leads or current leads based
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on High-Temperature Superconductor. The cryogenic wall power associated with the conventional
50 kA leads could be reduced by a factor of 4 with high Tc leads.

B.8 Conclusions

Magnetizing volumes on the order of 30,000 to 60,000m3 at fields up to 0.5T presents techni-
cal challenges, but is certainly within the current engineering capabilities. The cost, however, in
most scenarios is prohibitive. The use of room temperature Cu or Al conductor could provide a
modest field (≤0.1T), but operating costs are likely to be excessive. Conventional superconducting
magnet technology could provide the necessary field at acceptable operating costs, but the magnet
construction costs using a conventional vacuum-insulatedcryostat are not affordable. High Tc su-
perconducting coils using foam insulated cryostats show promise, especially given the rapid pace
in which this technology is developing. The current state-of-the-art in high Tc cable might present
an affordable technical solution to this problem, but much more R&D on coil assembly, magnet
quench performance and cryostat would need to be done. Usingthe STL concept presents some
very interesting possibilities. It eliminates the cost driver of large conventional superconducting
coils, the vacuum-insulated cryostat, and has already beenprototyped, tested, and costed during
the R&D for the VLHC. A full engineering design would still need to be done, but this technique
has the potential to deliver the large magnetic volume required with a field as high as 1T with very
uniform field quality and at an acceptable cost. Developments with high Tc superconducting cable
could also have an impact on the STL design concept, with potential cost savings.

C Matter effects

The matter effect causes different oscillation patterns for neutrinos and antineutrinos, depending
on the mass hierarchy. Observing this difference is the mostfeasible way to determine the mass
hierarchy. The difference may be observable with baselineslonger than about 1000 km, depending
on the quality and quantity of achievable data and oscillation parameters.

The difference is most visible at the MSW resonance, where the oscillations of one channel are
enhanced and those of the other suppressed. For the usual neutrino parameters the resonance en-
ergy is about 10 GeV in the lithosphere, about 7 GeV in the mantle at depths relevant for the magic
baseline, and about 3 GeV in the core. (The uncertainties of neutrino parameters cause an uncer-
tainty of about 20% at 3σ for this prediction.) For energies much higher than the resonance energy
all oscillations are suppressed, and for energies well below the resonance energy the oscillations
can be treated as in vacuum.

The detailed simulation of the propagation of neutrinos through the Earth requires a suffi-
ciently accurate knowledge of the density profile along the baseline. The uncertainties of the den-
sity profile cause correlations in the parameter space that complicate the analysis and reduce the
accuracy of results. For a largeθ13 the density uncertainty of 5% may cause rather large errors
while 1% accuracy would make the correlations ignorable. With smallerθ13 the requirements for
the accuracy are milder, and with sin22θ13 < 10−3 the dominant error comes from elsewhere and
any reasonable density model will be sufficiently accurate.The correlations can be also reduced by
a suitable choice of multiple baselines and channels [115].
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Within first order, one can use the average density uncertainty of the baseline an indicator of
goodness. Uncorrelated local variations around the average mostly smooth out for realistic density
profiles, when not in resonance, and all small-scale densityvariations with a scale up to a few
kilometres are completely irrelevant. However, a better error analysis in a variable density requires
numerical treatment, as different densities contribute differently, and particularly the resonance
case should be studied with more care.

According to geophysical studies, the difference between the density of the Earth and the
density defined by a standard spherical Earth model (e.g. PREM [116]) does not exceed 5%.2 The
uncertainties are due to both global or systematic effects for the average density distribution and un-
known local variations. The local variations can be rather large, particularly for complicated zones
like active mountains, subduction zones, hot spots, plumesor superplumes. Such variations may
extend down to the border of the inner core. Also it is to be noted that the inner core is in rotation
relative to the mantle, even its axis deviates from the rotation axis of the Earth. The detailed models
for the inner parts are not yet free from inconsistencies, and therefore must be treated with care.

Using the data of local and regional geophysical measurements one can construct local models
much better than the 1-dimensional PREM model. Specific local and regional models may reach
up to 1% accuracy. With good geophysical measurements one can obtain knowledge to define the
density profile even for complicated regions. Nevertheless, for most part of the Earth, particularly
oceans, sufficiently accurate measurements cannot be done,and one has to rely on general models.
The models for ocean crust are usually very simple, but one should be careful when using such
models as the simplicity may be due to our ignorance.

A specific model for the baseline CERN-Pyhäsalmi was constructed in ref. [117] (figure 44).
For this specific baseline there are abundant geophysical data, and a realistic density profile can be
built up, despite some parts of the baseline being rather complicated. The most challenging part
is the upswelling asthenosphere under Germany which causesthe largest uncertainty. It was con-
cluded that one can reach about 1% accuracy in estimating regional density variations (e.g. density
inhomogeneities of more than several dozens kilometers) for baselines from CERN to Pyhäsalmi.
All later geophysical studies support the previous view, and no surprises have occurred.

It was shown explicitly in ref. [117] that the uncertainties in this model do not cause any
significant error in the interpretation of the data, with realistic experimental scenarios.

Similar studies for other baselines would be welcome (see [118] for a study in Japan). While
waiting for other studies, we can extrapolate the experiences from modelling of the above baseline
and from general considerations, to predict the accuraciesof other profiles. Also, opinions different
from those above have been expressed [119].

In order to get the best accuracy for the density profile, the following general conclusions can
be drawn:

1. It is recommendable to use well known continental areas passing tectonically stable flat re-
gions.

2. One should avoid complicated zones like high mountains and seismically active or volcanic
areas.

2The errors here and throughout this section do not correspond to Gaussian distributions, but are rather “maximal
reasonable deviations”. For any decisions on the location of experiments we need more than 1σ certainty.
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Figure 44. The estimated density profile for the baseline CERN-Pyhäsalmi (Finland).

3. One should avoid oceans where little data are available.

4. Similarly one had better avoid baselines passing underdeveloped or politically challenging
countries where geophysical measurements will be too risky.

These conditions may be rather contradictory: some of the most complicated zones are also the
most studied, like Japan. On the other hand, particularly challenging zones are the Atlantic ridge
and most of the Pacific that are both complicated and difficultto be studied.

To reach the best accuracy for the density profile, the favoured beam directions are:

• From CERN towards North-East. Baseline lengths up to 2700 kmare achievable with 1%
accuracy for the density. On-going and planned geophysics measurements can improve the
accuracy even more.

• Across North-America. Similar accuracies are reachable for the USA when the USArray
gives data. Baseline lengths up to 4000 km are possible from BNL to West Coast of the
USA, and baselines up to 4000–5000 km can be achieved throughCanada to Alaska.

Geophysically disfavoured directions include beams from CERN to Canary Islands, Azores, Madeira
or Iceland, as well as any baseline around Japan.

For other long baselines the accuracy of density may not be better than 2–3%. The above
favoured baselines cannot be extended due to firm geographicconstraints, and hence the longer
baselines necessarily must pass through complicated or worse known zones. Baselines 4500–
6000 km may be particularly difficult when the baseline crosses the transition zone and touches
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Figure 45. Several baselines projected through the model of the Earthinterior (not to scale). A baseline of
O(5000 km) may be problematic as it largely intersects with the transition zone, where the density changes
quite abruptly from 4.0 to 4.4, and errors on its depth may result in large errors in the density profile. We
see that the second and third magic baselines (11000 km and 12300 ) traverse through the outer core that
dominates their refraction lengths.

tangentially boundary layers at the depths of 400 km and 660 km, with density jumps of 5% and
10%, respectively. In such a case a small error in the model may cause a considerable error in the
baseline density profile. For the most difficult oceanic baselines one can hardly reach 5% accuracy
for the average density.

When the baseline length equals the refraction length or itsmultiples one can do a clean
measurement of theθ13 mixing angle, independent on the CP-phase [120–122]. These baselines
are called magic, and can be solved analytically in constantdensity, but in varying density they
must be computed numerically, for example by solving the equation:

∫ Lmagic

0
exp

(

i
∫ x

0
V(y)dy

)

dx = 0, (C.1)

whereV(y) is the interaction potential in matter, which is proportional to the electron density.
EquationC.1gives a good first order approximation [122, 123] to the magic baseline. Integrating
the above using the PREM model and two extreme cases with arbitrary 5% uncertainties for the
density, and a 5 km uncertainty for the core-mantle boundary, the first magic length turns out to be
(7300±300) km long, the second(10060+70

−50) km and the third (12280+170
−140) km. For the first magic

baseline, the dominant error comes from the deep mantle, anddetailed knowledge of the crust in
start and end points is rather irrelevant. For the other two magic baselines the uncertainty of the
length is surprisingly small, considerably smaller than for the first one. This may sound paradoxi-
cal, but is understandable from figure45. These baselines pass through the dense outer core which
gives the largest contribution to the total refraction length, and also to the error. For these baselines,
the details of the lithosphere are completely ignorable, but the quoted 5% accuracy for the core den-
sity and particularly the 5 km accuracy for the core-mantle boundary may be rather optimistic.
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Figure 46. A sample plot presenting the effect of the uncertainties inthe density profile of figure44 to the
muon neutrino appearance probability due to errors in density. These correspond to the absolute deviation
in the probability with typical parameters.

The first magic baseline is not very sensitive to such uncertainties [124] (See also respective
sections in ISS Physics Report for analyses and references). On the other hand, the second and
particularly the third magic lengths are more sensitive to errors, which makes them less usable for
neutrino studies until better certainty on the core conditions can be reached. Alternatively, it has
been suggested to use neutrinos to measure the density of themantle or core [124–128].

There is no geophysically optimal candidate for a magic baseline from the proposed sites of the
accelerator. In any case it is safest to use continental baselines, and avoid oceans and complicated
zones. Most important is to choose the baseline so that we canmaximize the accuracy in the
deepest parts of the trajectory, while the properties of thelithosphere at the end points are less
relevant. CERN to Eastern Siberia or Northern China may be closest to optimal, and from Japan
the best direction is towards Northern Europe.

We conclude that it is possible to obtain sufficient accuracyfor the density profile to avoid
correlations. Future measurements may improve the accuracy, and if necessary, a dedicated geo-
physical measurement campaign for the selected baseline can be made, at a cost which is marginal
to total cost. However, in practice such measurements are possible only in limited parts of the
Earth, and particularly oceanic measurements will remain unrealistic for a long time. If the mixing
angle is small enough, density uncertainties are irrelevant and any baseline is good enough. For
defining the length of the magic baseline, however, uncertainties of the density are relevant for all
parameters, but in practice the physics is not very sensitive to them.

D Low energy cross sections

Existing cross-sections measurements cover properly the high-energy regime, above 5 GeV, but not
the low-energy where many of the new oscillation experiments will operate. In this region, the
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energy is crossing several threshold ofν interactions. The knowledge of the cross-section in this
regime is very limited, see [129] for a recent compilation. In addition to the intrinsic knowledge of
the interaction, the final state particles are affected by nuclear effects like nuclear re-interactions,
Pauli blocking and Fermi motion that alters the topology andkinematics of the outgoing particles.

The final state interactions could change the momentum and nature of nucleons and pions
produced in theν interactions. Both charged and neutral pions contribute tothe background in
disappearance (charged pions faking a muon) and appearance(neutral pion faking an electron)
experiments and should be understood to a 10% level for the next generation of superbeams [23].

The nuclear effects also alter the kinematics of the final state muon in charged current interac-
tions by inhibiting the reaction (Pauli blocking) or changing the center of mass energy where the
reaction takes place (Fermi Motion). These phenomena change basic kinematic properties of the
interaction like theq2 or the threshold of the reaction. The dependency of the cross-section with
the nuclear mass (A) has to be considered, since most of the measurements are done in light nuclei
(deuterium, carbon, oxygen, etc.). The measurement of the dependency of cross-section with A is
part of the experimental program of the Minerνa experiment [131].

The dominant neutrino interactions from 500 MeV to few GeV are:

• Charged current quasi-elastic and neutral current elasticinteractions.

• Neutral and charged current single pion production.

• Neutral and charged current multi pion production and more inelastic interactions.

• Neutral and charged current coherent pion production.

A compilation of actual knowledge on cross-sections is shown in figure47 for charged current
neutrino and anti-neutrino interactions.

In general, the available data is old (from the 70’s and 80’s), normalized to charged current
quasi-elastic using obsolete form factors and the beam spectrum and flux was based on dubious
hadron production models. The nuclear corrections are alsonot well documented or inconsistent,
the data is sparse, low statistics and some times inconsistent. The panorama is even worse when
we consider production of more than one pion in the final state.

Note that all existing cross-sections measurements above 200 MeV refer always to muon neu-
trinos and anti-neutrinos. Theντ andνe cross sections have not being measured due to the intrinsic
difficulties to produce the appropriate neutrino beam and due to neutrino detection techniques. The
cross-section can be safely assumed to be equal to that of muon neutrinos, except when we are
close to the threshold and the mass of the final state lepton together with the nuclear effects play
an important role. This is specially critical in the case of the low-γ β beams. Theβ beams search
for the transition ofνe to νµ , the low γ version is being designed for energies from 100 MeV to
500 MeV. This is the energy region that has the largest uncertainties in the relative cross-sections
betweenνe andνµ . Dedicated experiments will be needed in this case to control the systematic
errors to the required level, 0.1%.

D.1 Neutral current elastic and charge current quasi-elastic interactions

This interaction is of vital importance since it provides a method to reconstruct the neutrino energy.
The actual knowledge of the cross-section is not better than20%, Theory is based on Conserved
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Figure 47. Cross-section experimental values as a function of the neutrino energy (left). Results are
compared to NEUT [132] Monte Carlo simulation. Points show the experimental data: BNL 82 [133],
CCFR 90 [134], CDHSW 87 [135], IHEP-JINR 96 [136], IHEP-ITEP 79 [137], CCFRR 84 [138], ANL
82 [139], BNL 86 [140], ANL [ 141], GGM 77 [142], GGM 79 [143] and Serpukhov [144]. Cross-section
experimental values as a function of the anti-neutrino energy (right). Results are compared to NEUT [132]
Monte Carlo simulation. Points show the experimental data:CCFR 90 [134], CDHSW 87 [135], IHEP-JINR
96 [136], IHEP-ITEP 79 [137], CCFRR 84 [138], GGM 77 [142], GGM 79 [143], and Serpukhov [144].

Vector Current (CVC), Partially Conserved Axial Current (PCAC) and form factors measured in
electron nucleus scattering. The axial form factor is not known and it is normally parametrized
as a dipolar form factor with the axial mass as a free parameter. It should be noticed that this
parameter changes the total cross-section and theq2 of the interactions. Both methods had been
used to measure the parameter, coming to contradictory results as it was noted in [130]. Future
experiments [22, 23, 131] will be able to measure if the axial form factor departs fromthe simplistic
dipole format.

The neutral current elastic scattering is not of relevant importance for oscillation experiments,
although they can be used to determine the strange quark content inside nucleons.

D.2 Charge and neutral current resonance: single and multi pion production

The production of charged and neutral pions are important backgrounds to both disappearance and
appearance experiments. The knowledge of the resonance cross-section is difficult to model. To
the lack of knowledge of the standard axial form factors we have to add the uncertainties on the
amplitude of high mass resonances in the transition region to the deep inelastic. There are also
models [145] showing that the non-resonant contributions could be relevant and affect the cross-
sections very close to threshold. The non-resonant contribution is clearly present inνµn channels.
Nieves [145] argued that it is probably necessary to depart fromCA

5 (0) ∼ 1.2, which is the PCAC
dictated value of the leading axial form factor for the∆ excitation.

The neutral current resonant pion production should also bemeasured since they are back-
ground for appearance and also disappearance experiments,with the pion being identified as a
neutrino flavor tagging lepton. The nuclear reinteractionsare very relevant at this stage altering the
sign of the pion leaving the nucleus. The nuclear reinteraction cross-sections are known to a 20
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to 30% and they are difficult to measure in standard neutrino experiments. It is possible that T2K
will be able to address this measurement with the near detector that has good particle identification
capabilities and momentum resolution, see [23].

D.3 Neutral and charged current multi pion production and deep inelastic interactions

Deep inelastic cross-sections have been measured at high energies. The theoretical framework,
based on structure functions, is well established and it hasbeen measured in different experimental
conditions. But, there are still some unclear items: nuclear effects, lowq2 region and the transition
region to the resonant (single and multi pion) neutrino interactions.

As an example of the situation, the implementation of the transition region in the NEUT Monte
Carlo is done as a mixture of experimental results and standard Monte Carlo tools. NEUT produces
pions in the final state according to FNL-7 [146] results for a region where 1.3 GeV< W < 2.0 GeV
(W is the invariant mass of the hadronic current) and according to JETSET 7.4 [147] above
this value.

D.4 Charge and neutral current coherent pion production

The neutral current coherent pion production has been measured at relatively high energies (2.0 GeV)
and heavy nuclei. The values for light nuclei and low energies are not available and they might de-
pend on the theoretical model for extrapolations. Minerνa [131] and the near detector of T2K [22]
will be able to provide measurements for these reactions that are very important to determine the
background onνe appearance. Anyhow, this background will be mainly produced by interations of
high energy neutrinos.

The charged current coherent production is related to the neutral current cross-section at higher
energies but the relation might be distorted at low energiesas it was suggested by a recent K2K
result [148] due to the mass of the muon [149].

D.5 The cross-section double ratio

As discussed already in section3, the precise measurement of the CP asymmetry

ACP =
P(νµ → νe )−P(νµ → νe )

P(νµ → νe )+P(νµ → νe )
, (D.1)

or precise measurement of any appearance probability, willrequire knowledge of the cross-section,
efficiency and background of both the initial channel (for the near detector normalization) and of
the appearance channel. The ratio to worry about is the electron-to-muon neutrino cross-sections.
Indeed, the troublesome quantity is the double ratio:

DR=
σνµ /σνe

σνµ
/σνe

, (D.2)

whereσνµ really meansσνµ × ε −B, including a correction for efficiencyε and backgroundB.
Although it would seem that many systematic errors would cancel in this ratio, this is only partially
true. The effects that ensure a deviation of this quantity from unity are quite difficult to master:

• the muon mass effect;
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• Fermi motion and binding energy;

• the non-isoscalarity of the target (this is particularly relevant for water where anti-neutrinos
and neutrinos interact very differently on the free protons);

• the different neutrino and antineutrinoy distributions; and

• the different appearance of the final state lepton in the detector.

These effects are particularly relevant for the low energy neutrinos, as will be discussed here.
One can legitimately wonder whether everything needs to be measured or if theory cannot help by
predicting the double ratio using safe assumptions. Such ananalysis was developed by Jan Sobczyk
and collaborators [150]. If one concentrates on low energies, the dominant cross-sections will be
quasi-elastics. The cross-sections for the four relevant species of neutrinos are shown on the top
line of figure48.

The muon threshold effect is clearly visible. Due to the different inelasticity (ory distribution)
of neutrinos vs antineutrinos, the muon mass correction is however not the same for neutrinos and
antineutrinos, by an amount that can be quite large (20%).

The next thing to worry about are nuclear effects, which are nucleus dependent and particularly
relevant in water where antineutrinos can interact on the free protons, while neutrinos cannot. These
can be broadly separated in two classes, binding energy and Fermi motion. The description of the
effect of binding energy is considered to be quite uncertaingiven that the debris of the nucleus from
which the struck nucleon originates probably take away someof the binding energy in the reaction,
and it cannot entirely be attributed to the struck nucleon. The resulting effect on the double ratio
is extremely large at low energies, because of the existenceof antineutrino interactions on the free
protons. The region below 250 MeV probably cannot be trustedand the region above should be
seen as having an uncertainty given by the following factors.

• The uncertainty on the description of Fermi motion could be evaluated with the guidance
given by the difference between the Spectral Function approach and the Fermi Gas model.
Around 250 MeV this leads to an uncertainty of about 2% on the double ratio.

• The uncertainty due to the binding energy modelling. A shiftby, say, 50% of the binding
energy itself would change the double ratio by another 2%.

• There is also a large uncertainty related to the Impulse Approximation (IA) used in cross
section computations. The IA assumes that the relevant degrees of freedom are individual
nucleons. The analysis of electron scattering data clearlyshows that the IA is reliable only
for momentum transfers|~q| >∼ 400 MeV [151]. On the other hand, at a neutrino energy
∼ 400 MeV, about 40% of the cross section calculated within theIA corresponds to lower
values of|~q| (figure49). This is a source of large uncertainty which is difficult to estimate.
Of course, one can be optimistic and believe that the ratios are not affected much by the use
of the IA, but it is a source of additional systematic error.

Thus from considerations on total cross-sections alone, a fundamental uncertainty of the order
of 3–4% can be ascertained. The energy of 250 MeV incidentally corresponds to the oscillation
maximum for the distance between CERN and Frèjus. Taking into account the difficulties that will
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Figure 48. Top Left: quasi-elastic cross-sections on free nucleon (neutron for neutrinos and protons for
anti-neutrinos) for electron and muon neutrinos and antineutrinos. The muon threshold is clearly visible.
Top Right: theνµ to νe andν µ to νe cross-section ratios showing the effect of the different y-distributions.
Middle: the cross-section ratios between muon- and electron neutrinos (left) and antineutrinos (right) taking
into account nuclear effects, compared to those on free nuclei. The binding energy shows up as a shift in
the threshold, but the exact description of this is considered uncertain; the curves correspond to modelling
the nucleus with the Fermi Gas Model (FG) or with the SpectralFunction approach. Bottom left: the double
ratio in water from threshold to 1 GeV, and in the ’reliable’ region above 250 MeV (right).

be associated with the different energy spectra and detection efficiencies for muons and electrons, it
seems very unlikely that an uncertainty of less than 5% on thedouble ratioDRcan ever be achieved
at low energies from a combination of simulations and theory.
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Figure 49. Differential cross section ofνµ on 16O as a function of momentum transfer, at several values of
neutrino energy. The Impulse Approximation is only reliable in the region with|~q| > 400 MeV.
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